20..已知函數(shù)f(x)=$\frac{1}{3}$x3+ax2+bx,f′(-1)=-4,f′(1)=0
(1)求a,b的值;
(2)試確定函數(shù)f(x)的單調(diào)區(qū)間.

分析 (1)求出函數(shù)的導數(shù),根據(jù)f′(-1)=-4,f′(1)=0,得到關于a,b的方程組,解出即可;
(2)求出函數(shù)的導數(shù),解關于導函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間即可.

解答 解:(1)f′(x)=x2+2ax+b,
由f′(-1)=-4,f′(1)=0,
得$\left\{\begin{array}{l}{1-2a+b=-4}\\{1+2a+b=0}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{a=1}\\{b=-3}\end{array}\right.$;
(2)由(1)f(x)=$\frac{1}{3}$x3+x2-3x,
f′(x)=x2+2x-3=(x+3)(x-1),
令f′(x)>0,解得:x>1或x<-3,
令f′(x)<0,解得:-3<x<1,
故f(x)在(-∞,-3)遞增,在(-3,1)遞減,在(1,+∞)遞增.

點評 本題考查了函數(shù)的單調(diào)性問題,考查導數(shù)的應用以及轉化思想,是一道基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

10.當n≥2,n∈N*時,求證:1+$\frac{1}{\sqrt{2}}$+$\frac{1}{\sqrt{3}}$+…+$\frac{1}{\sqrt{n}}$>$\sqrt{n}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.下列說法中正確的有:①②
①若0<α<$\frac{π}{2}$,則sinα<α<tanα
②若α是第二象限角,則$\frac{α}{2}$是第一或第三象限角;
③與向量$\overrightarrow{a}$=(3,4)共線的單位向量只有$\overrightarrow{a}$=$(\frac{3}{5}$,$\frac{4}{5}$);
④函數(shù)f(x)=2x-8的零點是(3,0).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知某盒中有10個燈泡,其中有8個是正品,2個是次品.現(xiàn)需要從中取出1個正品.若每次只取出1個燈泡,取出后不放回,直到取出2個正品為止.設ξ為摸取的次數(shù),則P(ξ=4)=( 。
A.$\frac{4}{15}$B.$\frac{1}{15}$C.$\frac{28}{45}$D.$\frac{14}{45}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.如圖,在邊長為3的菱形ABCD中,∠ABC=60°,PA⊥平面ABCD,且PA=3,E為PD中點,F(xiàn)在棱PA上,且AF=1.
(1)求證:CE∥平面BDF;
(2)求點P到平面BDF的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.設復數(shù)z滿足(z-1)i=1+i(i為虛數(shù)單位),則z=( 。
A.2+iB.2-iC.-2-iD.-2+i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.在△ABC中,a,b,c分別為內(nèi)角A,B,C的對邊,且asinC=$\sqrt{3}$ccosA.
(1)求角A的大;
(2)若b=6,c=3,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知f(α)=cosαsinα
(Ⅰ)若角α終邊上的一點P(-4,3),求f(α)的值;
(Ⅱ)若$f(α)=\frac{1}{2}$,求tanα的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.下表提供了某廠節(jié)能降耗技術改造后生產(chǎn)甲產(chǎn)品過程中記錄的產(chǎn)量x(噸)與相應的生產(chǎn)能耗y(噸)標準煤的幾組對照數(shù)據(jù):
x345678
y2.5344.55.225.97
(1)請根據(jù)上表提供的前四列數(shù)據(jù)(對應的x=3,4,5,6),用最小二乘法求出y關于x的線性回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$
(2)在誤差不超過0.05的條件下,利用x=7時,x=8來檢驗(1)所求回歸直線是否合適;
(3)已知該廠技術改造前100噸甲產(chǎn)品能耗為90噸標準煤,試根據(jù)(1)求出的線性回歸方程,預測生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技術改造前降低多少噸標準煤?
(參考公式:$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-b$\overline{x}$)

查看答案和解析>>

同步練習冊答案