分析 (1)求出函數(shù)的導數(shù),根據(jù)f′(-1)=-4,f′(1)=0,得到關于a,b的方程組,解出即可;
(2)求出函數(shù)的導數(shù),解關于導函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間即可.
解答 解:(1)f′(x)=x2+2ax+b,
由f′(-1)=-4,f′(1)=0,
得$\left\{\begin{array}{l}{1-2a+b=-4}\\{1+2a+b=0}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{a=1}\\{b=-3}\end{array}\right.$;
(2)由(1)f(x)=$\frac{1}{3}$x3+x2-3x,
f′(x)=x2+2x-3=(x+3)(x-1),
令f′(x)>0,解得:x>1或x<-3,
令f′(x)<0,解得:-3<x<1,
故f(x)在(-∞,-3)遞增,在(-3,1)遞減,在(1,+∞)遞增.
點評 本題考查了函數(shù)的單調(diào)性問題,考查導數(shù)的應用以及轉化思想,是一道基礎題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{4}{15}$ | B. | $\frac{1}{15}$ | C. | $\frac{28}{45}$ | D. | $\frac{14}{45}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
x | 3 | 4 | 5 | 6 | 7 | 8 |
y | 2.5 | 3 | 4 | 4.5 | 5.22 | 5.97 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com