10.下表提供了某廠節(jié)能降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過程中記錄的產(chǎn)量x(噸)與相應(yīng)的生產(chǎn)能耗y(噸)標(biāo)準(zhǔn)煤的幾組對照數(shù)據(jù):
x345678
y2.5344.55.225.97
(1)請根據(jù)上表提供的前四列數(shù)據(jù)(對應(yīng)的x=3,4,5,6),用最小二乘法求出y關(guān)于x的線性回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$
(2)在誤差不超過0.05的條件下,利用x=7時,x=8來檢驗(1)所求回歸直線是否合適;
(3)已知該廠技術(shù)改造前100噸甲產(chǎn)品能耗為90噸標(biāo)準(zhǔn)煤,試根據(jù)(1)求出的線性回歸方程,預(yù)測生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技術(shù)改造前降低多少噸標(biāo)準(zhǔn)煤?
(參考公式:$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-b$\overline{x}$)

分析 (1)根據(jù)表格分別求出x,y的平均數(shù),求出系數(shù)$\widehat$,$\widehat{a}$的值,求出回歸方程即可;
(2)分別將x=7,8代入方程求出結(jié)果判斷即可;
(3)將x的值代入解析式計算即可.

解答 解:(1)$\overline{x}$=4.5;$\overline{y}$=3.5
$\stackrel{∧}$=$\frac{3.5}{5}$=0.7,$\widehat{a}$=0.35,
所以$\stackrel{∧}{y}$=0.7x+0.35,
(2)由(1)可知,
當(dāng)x=7時,y=5.25,5.25-5.22=0.03<0.05
 當(dāng)x=8時,y=5.95,5.97-5.95=0.02<0.05
 所以,此回歸直線符合條件;
(3)由(1)可知,當(dāng)x=100時,y=70.35(噸)
 所以,降低了90-70.35=19.65噸.

點評 本題考查了回歸方程問題以及回歸方程的應(yīng)用,考查計算能力,是一道中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20..已知函數(shù)f(x)=$\frac{1}{3}$x3+ax2+bx,f′(-1)=-4,f′(1)=0
(1)求a,b的值;
(2)試確定函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.某班級要從四名男生、兩名女生中選派四人參加某次社區(qū)服務(wù),則所選的四人中至少有一名女生的選法為( 。
A.14B.8C.6D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.拋物線y2=64x的準(zhǔn)線方程為(  )
A.x=8B.x=-8C.x=-16D.x=16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.下列函數(shù)中,最小值為2的函數(shù)是(  )
A.y=x+$\frac{1}{x}$B.y=sinθ+$\frac{1}{sinθ}$(0<θ<$\frac{π}{2}$)
C.y=sinθ+$\frac{1}{sinθ}$(0<θ<π)D.$\frac{1}{{\sqrt{{x^2}+2}}}+\sqrt{{x^2}+2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,棱錐P-ABCD的底面ABCD是矩形,PA⊥平面ABCD,PA=AD=2,BD=$2\sqrt{2}$.求二面角P-BC-D余弦值的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)g(x)=lnx和函數(shù)f(x)=-x2+(a+1)x-$\frac{1}{4}$a2(其中a<0).
(Ⅰ)求g(log210•lg2)的值;
(Ⅱ)用max{m,n}表示m,n中的最大值,設(shè)函數(shù)h(x)=max{f(x),g(x)}(x>0),討論函數(shù)h(x)零點的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.過拋物線y2=4x的焦點且與x軸垂直的直線交雙曲線${x^2}-\frac{y^2}{3}=1$的兩條漸近線于A、B兩點,則AB=( 。
A.$\frac{{4\sqrt{3}}}{3}$B.$2\sqrt{3}$C.6D.$4\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2017屆湖北省協(xié)作校高三聯(lián)考一數(shù)學(xué)(文)試卷(解析版) 題型:解答題

已知函數(shù)

(1)若,求函數(shù)的極值和單調(diào)區(qū)間;

(2)若在區(qū)間上至少存在一點,使得成立,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案