分析 由題意,f(x)=$\left\{\begin{array}{l}{{x}^{2}-2x,x≥2}\\{-{x}^{2}+2x,x<2}\end{array}\right.$,在(2,+∞)單調(diào)遞增,x<2,f(x)max=1<f(3)=3.f(2-ln(x+1))>f(3)化為2-ln(x+1)>3,即可解不等式.
解答 解:由題意,f(x)=$\left\{\begin{array}{l}{{x}^{2}-2x,x≥2}\\{-{x}^{2}+2x,x<2}\end{array}\right.$,在(2,+∞)單調(diào)遞增,
x<2,f(x)max=1<f(3)=3.
∵f(2-ln(x+1))>f(3),∴2-ln(x+1)>3,
∴l(xiāng)n(x+1)<-1,∴0<x+1<$\frac{1}{e}$,
∴-1<x<$\frac{1}{e}$-1,
∴不等式f(2-ln(x+1))>f(3)的解集為{x|-1<x<$\frac{1}{e}$-1},
故答案為{x|-1<x<$\frac{1}{e}$-1}.
點(diǎn)評(píng) 此題考查了其他不等式的解法,解決此類(lèi)問(wèn)題的關(guān)鍵是正確利用函數(shù)的單調(diào)性,結(jié)合不等式的解法解出x的范圍,此知識(shí)點(diǎn)是高考考查的重點(diǎn)之一.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | i | B. | -i | C. | -1 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{{\overrightarrow{a}}^{2}-{\overrightarrow}^{2}}{|\overrightarrow{a}|}$ | B. | $\frac{{\overrightarrow{a}}^{2}-{\overrightarrow}^{2}}{{\overrightarrow{a}}^{2}}$ | C. | $\frac{{\overrightarrow}^{2}-{\overrightarrow{a}}^{2}}{|\overrightarrow|}$ | D. | $\frac{{\overrightarrow{a}}^{2}-{\overrightarrow}^{2}}{|\overrightarrow|}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com