6.若平面α,β,γ中,α⊥β,則“γ⊥β”是“α∥γ”的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

分析 由α⊥β,“α∥γ”,可得γ⊥β,而反之不成立,可能α⊥γ.

解答 解:由α⊥β,“α∥γ”,可得γ⊥β,而反之不成立,可能α⊥γ.
因此α⊥β,則“γ⊥β”是“α∥γ”的必要不充分條件.
故選:B.

點(diǎn)評(píng) 本題考查了空間位置關(guān)系、簡易邏輯的判定方法,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.設(shè)函數(shù)f(x)=$\frac{1}{2}$x2+alnx,(a<0).
(1)若函數(shù)f(x)的圖象在點(diǎn)(2,f(2))處的切線斜率為$\frac{1}{2}$,求實(shí)數(shù)a的值;
(2)求f(x)的單調(diào)區(qū)間;
(3)設(shè)g(x)=x2-(1-a)x,當(dāng)a≤-1時(shí),討論f(x)與g(x)圖象交點(diǎn)的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{y≥0}\\{x+y≤0}\\{2x+y+2≥0}\end{array}\right.$,則z=2x-y的最小值為-6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.設(shè)數(shù)列{an}滿足:a1=1,an=e2an+1(n∈N*),$\frac{5}{2}$-$\frac{f(n)}{\underset{\stackrel{n}{Π}}{i=1}{a}_{i}}$=n,其中符號(hào)Π表示連乘,如$\underset{\stackrel{5}{Π}}{i=1}$i=1×2×3×4×5,則f(n)的最小值為-$\frac{1}{2{e}^{6}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知sin(α+$\frac{π}{4}$)=$\frac{\sqrt{2}}{10}$,α∈($\frac{π}{2}$,π).
求:(1)cosα的值;
(2)sin(2α-$\frac{π}{4}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.點(diǎn)P為正四面體ABCD的棱BC上任意一點(diǎn),則直線AP與直線DC所成角的范圍是$[\frac{π}{3},\frac{π}{2}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若k∈R,則“k>1”是方程“$\frac{x^2}{k-1}+\frac{y^2}{k+1}=1$”表示橢圓的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.即不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.在等差數(shù)列{an}中,若a3+a11=6,則其前13項(xiàng)的和S13的值是(  )
A.32B.39C.46D.78

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點(diǎn)為F(c,0),過點(diǎn)F且垂直于x軸的直線在第一象限內(nèi)與雙曲線及雙曲線的漸近線的交點(diǎn)依次為A、B,若2$\overrightarrow{OA}$=$\overrightarrow{OB}$+$\overrightarrow{OF}$,則該雙曲線的離心率的值為(  )
A.$\frac{2\sqrt{3}}{3}$B.$\sqrt{3}$C.2$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

同步練習(xí)冊答案