3.在二項(xiàng)式(1-2x)6的展開式中,所有項(xiàng)的系數(shù)之和為a,若一個(gè)正方體的各個(gè)頂點(diǎn)均在同一球的球面上,且一個(gè)頂點(diǎn)上的三條棱長(zhǎng)分別為2,3,a則此球的表面積為14π.

分析 由題意可知,令x=1,可得a=1,長(zhǎng)方體外接球直徑長(zhǎng)等于長(zhǎng)方體體對(duì)角線長(zhǎng),求出長(zhǎng)方體的對(duì)角線長(zhǎng),就是求出球的直徑,然后求出球的表面積.

解答 解:令x=1,可得a=1,
長(zhǎng)方體外接球直徑長(zhǎng)等于長(zhǎng)方體體對(duì)角線長(zhǎng),
即2R=$\sqrt{1+4+9}$=$\sqrt{14}$,
∴S=4πR2=14π.
故答案為:14π.

點(diǎn)評(píng) 本題是基礎(chǔ)題,考查空間想象能力,計(jì)算能力,順利解題的依據(jù)是:長(zhǎng)方體的體對(duì)角線就是外接球的直徑,明確幾何體的結(jié)構(gòu)特征,是解好立體幾何問(wèn)題的前提.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知數(shù)列{an}滿足al=-2,an+1=2an+4.
(I)證明數(shù)列{an+4}是等比數(shù)列;
(Ⅱ)求數(shù)列{|an|}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知函數(shù)g(x)=xsinθ-lnx-sinθ在[1,+∞)單調(diào)遞增,其中θ∈(0,π)
(1)求θ的值;
(2)若$f(x)=g(x)+\frac{2x-1}{x^2}$,當(dāng)x∈[1,2]時(shí),試比較f(x)與${f^/}(x)+\frac{1}{2}$的大小關(guān)系(其中f′(x)是f(x)的導(dǎo)函數(shù)),請(qǐng)寫出詳細(xì)的推理過(guò)程;
(3)當(dāng)x≥0時(shí),ex-x-1≥kg(x+1)恒成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)f(x)=ex+ax,(a∈R),其圖象與x軸交于A(x1,0),B(x2,0)兩點(diǎn),且x1<x2
(1)求a的取值范圍;
(2)證明:$f'(\frac{{3{x_1}+{x_2}}}{4})<0$;(f′(x)為f(x)的導(dǎo)函數(shù))
(3)設(shè)點(diǎn)C在函數(shù)f(x)的圖象上,且△ABC為等邊三角形,記$\sqrt{\frac{x_2}{x_1}}=t$,求(t-1)(a+$\sqrt{3}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.在圖所示的幾何體中,底面ABCD為正方形,PD⊥平面ABCD,EC∥PD,且PD=AD=2EC=2,N為線段PB的中點(diǎn).
(1)證明:NE⊥平面PBD;
(2)求四棱錐B-CEPD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.若雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$的漸近線與拋物線x2=4y的準(zhǔn)線所圍成的三角形面積為2,則雙曲線的離心率為(  )
A.$\frac{{\sqrt{5}}}{2}$B.$\sqrt{2}$C.$\sqrt{3}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.拋物線y=4ax2(a≠0)的焦點(diǎn)坐標(biāo)是$(0,\frac{1}{16a})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知a>0,b>0,c>0,函數(shù)f(x)=|x+a|-|x-b|+c的最大值為10.
(1)求a+b+c的值;
(2)求$\frac{1}{4}$(a-1)2+(b-2)2+(c-3)2的最小值,并求出此時(shí)a、b、c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知曲線C1的極坐標(biāo)方程是ρ=1,在以極點(diǎn)O為原點(diǎn),極軸為x軸的正半軸的平面直角坐標(biāo)系中,將曲線C1所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)為原來(lái)的3倍,得到曲線C2
(Ⅰ)求曲線C2的參數(shù)方程;
(Ⅱ)直線l過(guò)點(diǎn)M(1,0),傾斜角為$\frac{π}{4}$,與曲線C2交于A、B兩點(diǎn),求|MA|•|MB|的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案