分析 (1)利用絕對(duì)值不等式,求出f(x)的最大值為a+b+c,即可求a+b+c的值;
(2)利用柯西不等式,即可得出結(jié)論.
解答 解:(1)f(x)=|x+a|-|x-b|+c≤|b+a|+c,當(dāng)且僅當(dāng)x≥b時(shí)等號(hào)成立,
∵a>0,b>0,∴f(x)的最大值為a+b+c.
又已知f(x)的最大值為10,所以a+b+c=10.(4分)
(2)由(1)知a+b+c=10,由柯西不等式得[$\frac{1}{4}$(a-1)2+(b-2)2+(c-3)2](22+12+12)≥(a+b+c-6)2=16,
即$\frac{1}{4}$(a-1)2+(b-2)2+(c-3)2≥$\frac{8}{3}$(7分)
當(dāng)且僅當(dāng)$\frac{1}{4}$(a-1)=b-2=c-3,即a=$\frac{11}{3}$,b=$\frac{8}{3}$,c=$\frac{11}{3}$時(shí)等號(hào)成立.(10分)
點(diǎn)評(píng) 本題考查絕對(duì)值不等式、柯西不等式的運(yùn)用,考查學(xué)生分析解決問題的能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | S=S+xn | B. | S=S+$\frac{{x}_{n}}{n}$ | C. | S=S+n | D. | S=S+$\frac{{x}_{n}}{10}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com