Processing math: 11%
19.若(x+1xn展開(kāi)式中所有項(xiàng)系數(shù)之和為512,求:
(1)n的值;
(2)展開(kāi)式中含x3的項(xiàng).

分析 (1)根據(jù)題意:令x=1,可得2n=512,解得n.
(2)利用通項(xiàng)公式即可得出.

解答 解:(1)(x+1xn展開(kāi)式中所有項(xiàng)系數(shù)之和為512,
令x=1,可得2n=512,解得n=9.
(2)x+1x9的通項(xiàng)公式可得:Tr+1={∁}_{9}^{r}{x}^{9-r}(\frac{1}{x})^{r}={∁}_{9}^{r}x9-2r,
令9-2r=3,解得r=3.
∴T4={∁}_{9}^{3}{x}^{3}=84x3
∴展開(kāi)式中含x3的項(xiàng)為第四項(xiàng):84x3

點(diǎn)評(píng) 本題考查了二項(xiàng)式定理的應(yīng)用,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.若x,y∈R,設(shè)M=4x2-4xy+3y2-2x+2y,則M的最小值為-\frac{3}{8}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,若Sn=2an-2n+1(n∈N+),則數(shù)列{an}的通項(xiàng)公式為an=(n+1)•2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.命題“若x2≠4,則x≠2且x≠-2”的否命題為(  )
A.若x2=4,則x≠2且x≠-2B.若x2≠4,則x=2且x=-2
C.若x2≠4,則x=2或x=-2D.若x2=4,則x=2或x=-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知銳角△ABC的三內(nèi)角A,B,C所對(duì)的邊分別是a,b,c,且2csinA=\sqrt{3}a.
(1)求角C的大��;
(2)若a=5,且△ABC的面積為\frac{15\sqrt{3}}{2},求△ABC的AB邊上中線CD的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知平面向量\overrightarrow{m}=(cosx,sinx),\overrightarrow{n}=(cosx,-sinx).
(1)若向量\overrightarrow{m}\overrightarrow{n}的夾角為\frac{2π}{3},求x的值;
(2)若將函數(shù)y=\overrightarrow{m}\overrightarrow{n}的圖象向右平移\frac{π}{6}個(gè)單位,所得圖象的解析式記為g(x),求函數(shù)y=g(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.設(shè)命題p:“若ex>1,則x>0”,命題q:“若|x-3|>1,則x>4”,則( �。�
A.“p∧q”為真命題B.“p∨q”為真命題C.“¬p”為真命題D.以上都不對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.若集合M={x|log2(x-1)<1},N={x|\frac{1}{4}<(\frac{1}{2}x<1},則M∩N=(  )
A.{x|1<x<2}B.{x|1<x<3}C.{x|0<x<3}D.{x|0<x<2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知|\overrightarrow{a}|=4,且向量\overrightarrow{a}的方向相對(duì)x軸正向的轉(zhuǎn)角為\frac{π}{6},則向量\overrightarrow{a}的坐標(biāo)為(2\sqrt{3},2)或(2\sqrt{3},-2).

查看答案和解析>>

同步練習(xí)冊(cè)答案