分析 根據(jù)數(shù)列遞推公式得到數(shù)列{an}是以2為公比的等比數(shù)列,求出數(shù)列{an}的通項公式,再根據(jù)新定義,即可求出λ的范圍.
解答 解:∵Sn=2an+3λ-1(n∈N*),
n≥2時,Sn-1=2an-1+3λ-1,
兩式相減得an=2an-1.
故數(shù)列{an}是以2為公比的等比數(shù)列,
當n=1時,a1=1-3λ
∴an=(1-3λ)2n-1,
計算可得an+1-an=(1-3λ)2n-1,an-an-1=(1-3λ)2n-2,
由此可得(an+1-an)-(an-an-1)=(1-3λ)2n-2>0
故1-3λ>0,解得λ<$\frac{1}{3}$
故λ的取值范圍為(-∞,$\frac{1}{3}$),
故答案為:(-∞,$\frac{1}{3}$)
點評 本題考查了遞推關(guān)系、不等式的解法、新定義,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ①③ | B. | ②③ | C. | ①④ | D. | ③④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {1,2,3,4} | B. | {2,4} | C. | {2,3,4} | D. | {x|1<x≤4} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com