【題目】在正四面體中,、、分別是、、的中點,下面四個結(jié)論中不成立的是( )
A.面B.面
C.面面D.面面
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在棱長為a的正方體ABCD-A1B1C1D1中,M,N分別是AA1,D1C1的中點,過D,M,N三點的平面與正方體的下底面A1B1C1D1相交于直線l.
(1)畫出直線l的位置,并簡單指出作圖依據(jù);
(2)設(shè)l∩A1B1=P,求線段PB1的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于定義域為D的函數(shù),如果存在區(qū)間,同時滿足:①在內(nèi)是單調(diào)函數(shù);②當(dāng)定義域是時,的值域也是,則稱是該函數(shù)的“優(yōu)美區(qū)間”.
(1)求證:是函數(shù)的一個“優(yōu)美區(qū)間”.
(2)求證:函數(shù)不存在“優(yōu)美區(qū)間”.
(3)已知函數(shù)()有“優(yōu)美區(qū)間”,當(dāng)a變化時,求出的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知y=f(x)是定義在R上的偶函數(shù),當(dāng)x0時,f(x)=.
(1)求當(dāng)x<0時,f(x)的解析式;
(2)作出函數(shù)f(x)的圖象,并指出其單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于函數(shù)f(x)=4sin(2x+)(x∈R),有下列命題:
①y=f(x)的表達(dá)式可改寫為y=4cos(2x﹣);
②y=f(x)是以2π為最小正周期的周期函數(shù);
③y=f(x)的圖象關(guān)于點對稱;
④y=f(x)的圖象關(guān)于直線x=﹣對稱.
其中正確的命題的序號是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,動物園要圍成相同面積的長方形虎籠四間,一面可利用原有的墻,其它各面用鋼筋網(wǎng)圍成.
(1)現(xiàn)有可圍長網(wǎng)的材料,每間虎籠的長、寬各設(shè)計為多少時,可使每間虎籠面積最大?
(2)若使每間虎籠面積為,則每間虎籠的長、寬各設(shè)計為多少時,可使圍成四間虎籠的鋼筋網(wǎng)總長最小?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】候鳥每年都要隨季節(jié)的變化而進(jìn)行大規(guī)模的遷徙,研究某種鳥類的專家發(fā)現(xiàn),該種鳥類的飛行速度v(單位:m/s)與其耗氧量Q之間的關(guān)系為v=a+blog3 (其中a,b是實數(shù)).據(jù)統(tǒng)計,該種鳥類在靜止時其耗氧量為30個單位,而其耗氧量為90個單位時,其飛行速度為1m/s.
(1)求出a,b的值;
(2)若這種鳥類為趕路程,飛行的速度不能低于2m/s,則其耗氧量至少要多少個單位?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】祖暅原理:兩個等高的幾何體,若在所有等高處的水平截面的面積相等,則這兩個幾何體的體積相等.利用祖暅原理可以求旋轉(zhuǎn)體的體積.比如:設(shè)半圓方程為,半圓與軸正半軸交于點,作直線,交于點,連接(為原點),利用祖暅原理可得:半圓繞軸旋轉(zhuǎn)所得半球的體積與繞軸旋轉(zhuǎn)一周形成的幾何體的體積相等.類比這個方法,可得半橢圓繞軸旋轉(zhuǎn)一周形成的幾何體的體積是_________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系 xOy 中,已知橢圓 C:的離心率為,且過點 (,),點 P 在第四象限, A 為左頂點, B 為上頂點, PA 交 y 軸于點 C,PB 交 x 軸于點 D.
(1) 求橢圓 C 的標(biāo)準(zhǔn)方程;
(2) 求 △PCD 面積的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com