19.已知球的半徑為25,有兩個平行平面截球所得的截面面積分別是49π和400π,則這兩個平行平面間的距離為9或39.

分析 先根據(jù)兩個截面圓的面積分別求出對應圓的半徑,再分析出兩個截面所存在的兩種情況,最后對每一種情況分別求出兩個平行平面的距離即可.

解答 解:設兩個截面圓的半徑別為r1,r2.球心到截面的距離分別為d1,d2.球的半徑為R.
由πr12=49π,得r1=7.
由πr22=400π,得r2=20.
如圖①所示.當球的球心在兩個平行平面的外側時,這兩個平面間的距離為球心與兩個截面圓的距離之差,
即d1-d2=$\sqrt{2{5}^{2}-{7}^{2}}-\sqrt{2{5}^{2}-2{0}^{2}}=9$.
如圖②所示.當球的球心在兩個平行平面的之間時,這兩個平面間的距離為球心與兩個截面圓的距離之和.
即d1+d2=$\sqrt{2{5}^{2}-{7}^{2}}+\sqrt{2{5}^{2}-2{0}^{2}}=39$.
故答案為:9或39.

點評 本題主要考查兩個平行平面間的距離計算問題.此題重點考查球中截面圓半徑,球半徑之間的關系以及空間想象能力和計算能力.本題的易錯點在于只考慮一種情況,從而漏解.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

3.已知銳角△ABC中,角A,B,C所對的邊分別為a,b,c,b=sin(A+C),cos(A-C)+cosB=$\sqrt{3}$c.
(1)求角A的大;
(2)求b+c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知函數(shù)f(x)=2lnx-3x2-11x.
(1)求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)若關于x的不等式f(x)≤(a-3)x2+(2a-13)x-2恒成,求整數(shù)a的最小值;
(3)若正實數(shù)x1,x2滿足f(x1)+f(x2)+4(x12+x22)+12(x1+x2)=4,證明:x1+x2≥2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.設雙曲線的實軸長為2a(a>0),一個焦點為F,虛軸的一個端點為B,如果原點到直線FB的距離恰好為實半軸長,那么雙曲線的離心率為( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.$\frac{\sqrt{5}+1}{2}$D.$\frac{\sqrt{3}+1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知函數(shù)f(x)=xm-$\frac{2}{x}$且f(4)=$\frac{7}{2}$,
(1)求m的值;
(2)判斷f(x)在(0,+∞)上的單調性,并用定義證明.
(3)求f(x)在[2,5]上的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.當直線y=k(x-2)+4和曲線y=$\sqrt{4-{x}^{2}}$ 有公共點時,實數(shù)k的取值范圍是$[{\frac{3}{4},+∞})$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知tanα=$\sqrt{3},π<α<\frac{3π}{2}$,則$cos2α-sin({\frac{π}{2}+α})$=( 。
A.0B.-1C.1D.$\frac{{\sqrt{3}-1}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知實數(shù)x,y滿足不等式組$\left\{\begin{array}{l}{x-y+2≥0}\\{x+y-4≥0}\\{2x-y-5≤0}\end{array}\right.$,則目標函數(shù)z=2y-x的最大值為( 。
A.14B.13C.12D.11

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知條件p:|x-4|≤6,條件q:x≤1+m,若p是q的充分不必要條件,則m的取值范圍是( 。
A.(-∞,-1]B.(-∞,9]C.[1,9]D.[9,+∞)

查看答案和解析>>

同步練習冊答案