18.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,△ABC的面積為S,$asinB=\sqrt{3}bcosA$.
(1)求角A的大。
(2)若$a=\sqrt{3}$,$S=\frac{{\sqrt{3}}}{2}$,求b+c的值.

分析 (1)利用正弦定理化簡(jiǎn)已知條件,通過(guò)三角形內(nèi)角求解A的大小即可.
(2)由三角形的面積公式求出ab=2,再根據(jù)余弦定理即可求出b+c的值.

解答 解:(1)asinB=$\sqrt{3}$bcosA,由正弦定理可得sinAsinB=$\sqrt{3}$sinBcosA,
∵B是三角形內(nèi)角,∴sinB≠0,
∴tanA=$\sqrt{3}$,A是三角形內(nèi)角,
∴A=$\frac{π}{3}$.
(2)∵S=$\frac{1}{2}$bcsinA=$\frac{\sqrt{3}}{2}$,
∴bc=2,
由余弦定理a2=b2+c2-2bccosA,可得3=b2+c2-bc=(b+c)2-3bc=(b+c)2-6,
∴b+c=3.

點(diǎn)評(píng) 本題考查正弦定理以及余弦定理,三角形面積公式在解三角形中的應(yīng)用,考查計(jì)算能力和轉(zhuǎn)化思想,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.某中學(xué)語(yǔ)文老師從《紅樓夢(mèng)》、《平凡的世界》、《紅巖》、《老人與!4本不同的名著中選出3本,分給三個(gè)同學(xué)去讀,其中《紅樓夢(mèng)》為必讀,則不同的分配方法共有( 。
A.6種B.12種C.18種D.24種

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.牛頓法求方程f(x)=0近似根原理如下:求函數(shù)y=f(x)在點(diǎn)(xn,f(xn))處的切線y=f′(xn)(x-xn)+f(xn),其與x軸交點(diǎn)橫坐標(biāo)xn+1=xn-$\frac{f({x}_{n})}{f′({x}_{n})}$(n∈N*),則xn+1比xn更靠近f(x)=0的根,現(xiàn)已知f(x)=x2-3,求f(x)=0的一個(gè)根的程序框圖如圖所示,則輸出的結(jié)果為( 。
A.2B.1.75C.1.732D.1.73

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.cos2$\frac{π}{12}+sin\frac{π}{12}cos\frac{π}{12}$=$\frac{3+\sqrt{3}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知向量$\overrightarrow a=(m,2)$,$\overrightarrow b=(2,-1)$,且$\overrightarrow a⊥\overrightarrow b$,則$\frac{|2\overrightarrow a-\overrightarrow b|}{\overrightarrow a•(\overrightarrow a+\overrightarrow b)}$等于( 。
A.$-\frac{5}{3}$B.1C.2D.$\frac{5}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.在△ABC中,已知三內(nèi)角A,B,C成等差數(shù)列,且sin($\frac{π}{2}$+A)=$\frac{11}{14}$.
(Ⅰ)求tanA及角B的值;
(Ⅱ)設(shè)角A,B,C所對(duì)的邊分別為a,b,c,且a=5,求b,c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.一個(gè)人把4根細(xì)繩緊握在手中,僅露出它們的頭和尾,然后另一人每次任取一個(gè)繩頭和一個(gè)繩尾打結(jié),依次進(jìn)行直到打完4個(gè)結(jié),則放開(kāi)手后4根細(xì)繩恰巧構(gòu)成4個(gè)環(huán)的概率為$\frac{1}{16}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.面積為4$\sqrt{3}$的等邊三角形ABC中,D是AB邊上靠近B的三等分點(diǎn),則$\overrightarrow{CD}$•$\overrightarrow{AB}$=$\frac{8}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.函數(shù)$f(x)=Asin(ωx+\frac{π}{6})(A>0,ω>0)$的最大值為2,它的最小正周期為2π.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)若g(x)=cosx•f(x),求g(x)在區(qū)間$[-\frac{π}{6},\frac{π}{4}]$上的最大值和最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案