3.在△ABC中,已知三內(nèi)角A,B,C成等差數(shù)列,且sin($\frac{π}{2}$+A)=$\frac{11}{14}$.
(Ⅰ)求tanA及角B的值;
(Ⅱ)設(shè)角A,B,C所對(duì)的邊分別為a,b,c,且a=5,求b,c的值.

分析 (Ⅰ)根據(jù)等差數(shù)列的性質(zhì)可得B=$\frac{π}{3}$,再根據(jù)誘導(dǎo)公式和同角的三角函數(shù)的關(guān)系即可求出tanA.
(Ⅱ)根據(jù)正弦定理求出b,再根據(jù)余弦定理求出c.

解答 解:(Ⅰ)∵A,B,C成等差數(shù)列,
∴2B=A+C,
又A+B+C=π,
則B=$\frac{π}{3}$,
∵sin($\frac{π}{2}$+A)=$\frac{11}{14}$,
∴cosA=$\frac{11}{14}$,
∴sinA=$\sqrt{1-co{s}^{2}A}$=$\frac{5\sqrt{3}}{14}$,
∴tanA=$\frac{sinA}{cosA}$=$\frac{5\sqrt{3}}{11}$;
(Ⅱ)由正弦定理可得$\frac{a}{sinA}$=$\frac{sinB}$,
∴b=$\frac{5×\frac{\sqrt{3}}{2}}{\frac{5\sqrt{3}}{14}}$=7,
由余弦定理可得a2=b2+c2-2bccosA,
即25=49+c2-11c,
解得c=3或c=8,
∵cosA=$\frac{11}{14}$>cos$\frac{π}{3}$,
∴A<$\frac{π}{3}$,
∴C>$\frac{π}{3}$,
∴c=3舍去,
故c=8.

點(diǎn)評(píng) 本題考查了正弦定理、余弦定理,內(nèi)角和定理,以及等差中項(xiàng)的性質(zhì)的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知數(shù)列{an}是等差數(shù)列,其前n項(xiàng)和Sn有最大值,且$\frac{{{a_{2017}}}}{{{a_{2016}}}}$<-1,則使得Sn>0的n的最大值為( 。
A.2016B.2017C.4031D.4033

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且滿足(a-b)(sinA+sinB)=(c-b)sinC,則角A等于$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,△ABC的面積為S,(a2+b2)tanC=8S,且sinAcosB=2cosAsinB,則cosA=$\frac{{\sqrt{30}}}{15}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,△ABC的面積為S,$asinB=\sqrt{3}bcosA$.
(1)求角A的大;
(2)若$a=\sqrt{3}$,$S=\frac{{\sqrt{3}}}{2}$,求b+c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知直線l1:mx+3y+3=0,l2:x+(m-2)y+1=0,則“m=3”是“l(fā)1∥l2”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知$\overrightarrow{a}$=(1,2),$\overrightarrow$=(4,2),則$\overrightarrow{a}$與$\overrightarrow$的夾角的余弦值為$\frac{4}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在極坐標(biāo)系中,圓C的圓心在極軸上,且過極點(diǎn)和點(diǎn)$({3\sqrt{2},\frac{π}{4}})$,求圓C的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知奇函數(shù)f(x)=Acos(ωx+φ)(A>0,ω>0,0<φ<π)的部分圖象如圖所示,點(diǎn)M的坐標(biāo)為(1,0)且△MNE為等腰直角三角形,當(dāng)A的最大值為( 。
A.1B.$\frac{1}{2}$C.$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案