已知M與兩定點O(0,0)、A(3,0)的距離之比為
1
2

(1)求M點的軌跡方程;
(2)若M的軌跡為曲線C,求C關于直線2x+y-4=0對稱的曲線C′的方程.
考點:軌跡方程
專題:計算題,直線與圓
分析:(1)設M坐標為(x,y),由題意得
x2+y2
(x-3)2+y2
=
1
2
,整理得M點的軌跡方程;
(2)求出C關于直線2x+y-4=0對稱的曲線C′的圓心坐標,即可求得結論.
解答: 解:(1)設M坐標為(x,y),由題意得
x2+y2
(x-3)2+y2
=
1
2
,整理得(x+1)2+y2=4.
所以M點的軌跡方程為(x+1)2+y2=4.
(2)因為曲線C:(x+1)2+y2=4,
所以C關于直線2x+y-4=0對稱的曲線C′是與C半徑相同的圓,故只需求C′的圓心坐標即可,設C′的圓心坐標(x0,y0).
由題意得
y0
x0+1
=
1
2
2•
x0-1
2
+
y0
2
-4=0
,解得
x0=3.8
y0=2.4

故曲線C′的方程為(x-3.8)2+(y-2.4)2=4.
點評:本題考查軌跡方程,考查圓的對稱性,考查學生的計算能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

建造一個容積為8m3,深為2m的長方體無蓋水池,如果池底和池壁的造價每平方米分別為120元和80元.
(Ⅰ)寫出建造水池的總造價y元關于底的一邊長x米的函數(shù)解析式y(tǒng)=f(x),并求定義域.
(Ⅱ)當?shù)走呴L為多少米時總造價最低?最低總造價為多少元?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列說法中:
①23的立方根等于26的六次方根;
664
的運算結果是±2;
③根式
366-x
在實數(shù)范圍內(nèi)是沒有意義的;
④根式
na
(n為正奇數(shù))與根式
mam
(m為正整數(shù))中,a的取值范圍都是全體實數(shù);
⑤不存在實數(shù)a,使得根式
a
+
4-a
在實數(shù)范圍內(nèi)有意義.
其中正確的個數(shù)有( 。
A、1個B、2個C、3個D、4個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

計算或花間下列各式:
(1)2log510+log50.25
(2)(2a
2
3
b
1
2
)(-6a
1
2
b
1
3
)÷(-3a
1
6
b
5
6
)(a>0,b>0)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
ax
x2-1
(a>0).
(1)判斷并證明函數(shù)f(x)的奇偶性;
(2)判斷函數(shù)f(x)的單調(diào)性,并用函數(shù)的單調(diào)性定義給予證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)設a,b,c∈(0,+∞),且a+b+c=1,求證
1
a
+
1
b
+
1
c
≥9.
(2)已知a,b,c是不全相等的正數(shù),求證:a(b2+c2)+b(c2+a2)+c(a2+b2)>6abc.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

判斷下列函數(shù)的奇偶性
(1)f(x)=|x+1|+|x-1|
(2)f(x)=
2x2+2x
x+1

(3)f(x)=
1-x2
+
x2-1

(4)f(x)=
1-x2
2-|x+2|

(5)f(x)=(x-1)
1+x
1-x

(6)f(x)=
x+3
0
-x+3
,
x<-1
|x|≤1
x>1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

備受矚目的巴西世界杯正在如火如荼的進行,為確保總決賽的順利進行,組委會決定在位于里約熱內(nèi)盧的馬拉卡納體育場外臨時圍建一個矩形觀眾候場區(qū),總面積為72m2(如圖所示).要求矩形場地的一面利用體育場的外墻,其余三面用鐵欄桿圍,并且要在體育館外墻對面留一個長度為2m的入口.現(xiàn)已知鐵欄桿的租用費用為100元/m.設該矩形區(qū)域的長為x(單位:m),租用鐵欄桿的總費用為y(單位:元)
(Ⅰ)將y表示為x的函數(shù);
(Ⅱ)試確定x,使得租用此區(qū)域所用鐵欄桿所需費用最小,并求出最小最小費用.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖是計算y=f(x)函數(shù)值的程序框圖.   
(Ⅰ)請寫出程序對應函數(shù)f(x)的表達式;
(Ⅱ)若輸出的結果是正數(shù),求輸入的實數(shù)x的取值范圍.

查看答案和解析>>

同步練習冊答案