設f(x)=
ln(x-1)   (x>1)
x2-4         (x≤1)
,則f(x)<0的解集為
 
考點:其他不等式的解法
專題:計算題,不等式的解法及應用
分析:當0<x-1<1與-2<x≤1時,f(x)<0,從而可求得f(x)<0的解集.
解答: 解:∵f(x)=
ln(x-1)   (x>1)
x2-4         (x≤1)
,
∴當0<x-1<1,即1<x<2時,f(x)=ln(x-1)<0;
當x≤1時,f(x)=x2-4,由x2-4<0得:-2<x<2,
∴-2<x≤1,即-2<x≤1時,f(x)<0;
綜上所述,f(x)<0的解集為{x|-2<x≤1或1<x<2}={x|-2<x<2}.
故答案為:{x|-2<x<2}.
點評:本題考查對數(shù)不等式與二次不等式的解法,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

loga
1
4
<1
,則a的取值
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)=
log2x,x>0
log
1
2
(-x),x<0
,若f(a)<0,則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

現(xiàn)有A,B兩個投資項目,投資兩項目所獲得利潤分別是P和Q(萬元),它們與投入資金x(萬元)的關系依次是:其中P與x平方根成正比,且當x為4(萬元)時P為1(萬元),又Q與x成正比,當x為4(萬元)時Q也是1(萬元);某人甲有3萬元資金投資.
(Ⅰ)分別求出P,Q與x的函數(shù)關系式;
(Ⅱ)請幫甲設計一個合理的投資方案,使其獲利最大,并求出最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設F為拋物線C:y2=4x的焦點,過F的直線交拋物線C于A、B兩點,其中點A在x軸的上方,且滿足
AF
=4
FB
,則直線AB的方程為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
-sinx,0≤x≤
π
2
3x+
1
2
,x<0
,若f(x0)=-
1
2
,則x0=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,A=60°,b=1,其面積為
3
,則a=( 。
A、
9
2
B、
13
C、4
D、
3
13
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

△ABC中,角A,B,C的對邊分別是a,b,c,且滿足2bcosA≤2c-
3
a
,則角B范圍是( 。
A、(0,
π
3
]
B、(0,
3
]
C、[
π
6
π
2
D、(0,
π
6
]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

lim
n→∞
an2+1
2n2+3n
=
3
2
則a=
 

查看答案和解析>>

同步練習冊答案