2.將A,B,C,D,E這5名同學(xué)從左至右排成一排,則A與B相鄰且A與C之間恰好有一名同學(xué)的排法有( 。
A.18B.20C.21D.22

分析 解:根據(jù)題意,分2種情況討論:①、若A與C之間為B,即B在A、C中間且三人相鄰,②、若A與C之間不是B,分別求出每種情況的排法數(shù)目,由分類計(jì)數(shù)原理計(jì)算可得答案.

解答 解:根據(jù)題意,分2種情況討論:
①、若A與C之間為B,即B在A、C中間且三人相鄰,
考慮A、C的順序,有A22種情況,將三人看成一個(gè)整體,
與D、E2人全排列,有A33=6種情況,
則此時(shí)有2×6=12種排法;
②、若A與C之間不是B,
先D、E中選取1人,安排A、C之間,有C21=2種選法,
此時(shí)B在A的另一側(cè),將4人看成一共整體,考慮之間的順序,有A22=2種情況,
將這個(gè)整體與剩余的1人全排列,有A22=2種情況,
則此時(shí)有2×2×2=8種排法;
則一共有12+8=20種符合題意的排法;
故選:B.

點(diǎn)評(píng) 本題考查排列、組合的綜合應(yīng)用,涉及分類計(jì)數(shù)原理的應(yīng)用,注意“A與B相鄰且A與C之間恰好有一名同學(xué)”這一條件.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知傾斜角為$\frac{π}{6}$的直線l過(guò)拋物線C:y2=2px(p>0)的焦點(diǎn)F,拋物線C上存在點(diǎn)P與x軸上一點(diǎn)Q(5,0)關(guān)于直線l對(duì)稱,則P=(  )
A.$\frac{1}{2}$B.1C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知P是拋物線y2=4x上的動(dòng)點(diǎn),Q在圓C:(x+3)2+(y-3)2=1上,R是P在y軸上的射影,則|PQ|+|PR|的最小值是3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.如圖,在直三棱柱ABC-A1B1C1中,若四邊形AA1C1C是邊長(zhǎng)為4的正方形,且AB=3,BC=5,M是AA1的中點(diǎn),則三棱錐A1-MBC1的體積為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.下列命題中真命題的個(gè)數(shù)是(  )
①若p∧q是假命題,則p,q都是假命題;
②命題“?x∈R,x3-x2+1≤0”的否定是“?x0∈R,x03-x02+1>0”;
③若p:x≤1,q:$\frac{1}{x}$<1,則¬p是q的充分不必要條件.
④設(shè)隨機(jī)變量X服從正態(tài)分布N(3,7),若P(X>C+1)=P(X<C-1),則C=3.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.通過(guò)對(duì)某城市一天內(nèi)單次租用共享自行車的時(shí)間50分鐘到100鐘的n人進(jìn)行統(tǒng)計(jì),按照租車時(shí)間[50,50),[60,70),[70,80),[80,90),[90,100)分組做出頻率分布直方圖如圖1,并作出租用時(shí)間和莖葉圖如圖2(圖中僅列出了時(shí)間在[50,60),[90,100)的數(shù)據(jù)).

(1)求n的頻率分布直方圖中的x,y
(2)從租用時(shí)間在80分鐘以上(含80分鐘)的人數(shù)中隨機(jī)抽取4人,設(shè)隨機(jī)變量X表示所抽取的4人租用時(shí)間在[80,90)內(nèi)的人數(shù),求隨機(jī)變量X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知函數(shù)f(x)=|x+2|+|x-3|
(1)證明:f(x)≥f(0);
(2)若?x∈R,不等式3f(x)>f(a+1)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.某市政府為了引導(dǎo)居民合理用水,決定全面實(shí)施階梯水價(jià),階梯水價(jià)原則上以住宅(一套住宅為一戶)的月用水量為基準(zhǔn)定價(jià):若用水量不超過(guò)12噸時(shí),按4元/噸計(jì)算水費(fèi);若用水量超過(guò)12噸且不超過(guò)14噸時(shí),超過(guò)12噸部分按6.60元/噸計(jì)算水費(fèi);若用水量超過(guò)14噸時(shí),超過(guò)14噸部分按7.80元/噸計(jì)算水費(fèi).為了了解全市居民月用水量的分布情況,通過(guò)抽樣,獲得了100戶居民的月用水量(單位:噸),將數(shù)據(jù)按照[0,2],(2,4],…,(14,16]分成8組,制成了如圖1所示的頻率分布直方圖.

(Ⅰ)假設(shè)用抽到的100戶居民月用水量作為樣本估計(jì)全市的居民用水情況.
( i)現(xiàn)從全市居民中依次隨機(jī)抽取5戶,求這5戶居民恰好3戶居民的月用水用量都超過(guò)12噸的概率;
(ⅱ)試估計(jì)全市居民用水價(jià)格的期望(精確到0.01);
(Ⅱ)如圖2是該市居民李某2016年1~6月份的月用水費(fèi)y(元)與月份x的散點(diǎn)圖,其擬合的線性回歸方程是$\widehaty=2x+33$.若李某2016年1~7月份水費(fèi)總支出為294.6元,試估計(jì)李某7月份的用水噸數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知函數(shù)f(x)=(x-3)ex+ax,a∈R.
(Ⅰ)當(dāng)a=1時(shí),求曲線f(x)在點(diǎn)(2,f(2))處的切線方程;
(Ⅱ)當(dāng)a∈[0,e)時(shí),設(shè)函數(shù)f(x)在(1,+∞)上的最小值為g(a),求函數(shù)g(a)的值域.

查看答案和解析>>

同步練習(xí)冊(cè)答案