若直線(xiàn)經(jīng)過(guò)原點(diǎn),且與直線(xiàn)的夾角為,則直線(xiàn)方程為_(kāi)__________

 

【答案】

【解析】

試題分析:因?yàn)橹本(xiàn)的斜率為,所以?xún)A斜角為,因?yàn)橹本(xiàn)與直線(xiàn)的夾角為,所以直線(xiàn)的傾斜角為,又因?yàn)橹本(xiàn)經(jīng)過(guò)原點(diǎn),所以直線(xiàn)方程為.

考點(diǎn):本小題主要考查兩直線(xiàn)的夾角和直線(xiàn)方程的求解,考查學(xué)生的運(yùn)算求解能力和數(shù)形結(jié)合思想的應(yīng)用.

點(diǎn)評(píng):本小題復(fù)合要求的直線(xiàn)有兩條,其中一條斜率不存在,計(jì)算時(shí)不要漏解.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C:(x+1)2+y2=4和圓外一點(diǎn)A(1,2
3
),
(1)若直線(xiàn)m經(jīng)過(guò)原點(diǎn)O且圓C上恰有三個(gè)點(diǎn)到直線(xiàn)m的距離為1,求直線(xiàn)m的方程;
(2)若經(jīng)過(guò)A的直線(xiàn)l與圓C相切,切點(diǎn)分別為D,E,求切線(xiàn)方程及DE所在的直線(xiàn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C以C(t,
2t
)(t∈R,t≠0)
為圓心且經(jīng)過(guò)原點(diǎn)O.
(Ⅰ)若直線(xiàn)2x+y-4=0與圓C交于點(diǎn)M,N,若|OM|=|ON|,求圓C的方程;
(Ⅱ)在(Ⅰ)的條件下,已知點(diǎn)B的坐標(biāo)為(0,2),設(shè)P,Q分別是直線(xiàn)l:x+y+2=0和圓C上的動(dòng)點(diǎn),求|PB|+|PQ|的最小值及此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2007廣州市水平測(cè)試)已知圓C經(jīng)過(guò)坐標(biāo)原點(diǎn),且與直線(xiàn)x-y+2=0相切,切點(diǎn)為A(2,4).
(1)求圓C的方程;
(2)若斜率為-1的直線(xiàn)l與圓C相交于不同的兩點(diǎn)M、N,求
AM
AN
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C的圓心坐標(biāo)為(2,-1),半徑為1
(1)求圓C的方程;
(2)求經(jīng)過(guò)原點(diǎn)O且與圓C相切的直線(xiàn)方程;
(3)若直線(xiàn)經(jīng)過(guò)原點(diǎn)O且與圓C相切于點(diǎn)Q,求線(xiàn)段OQ的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案