11.已知直線l:mx+y-2m-1=0,圓C:x2+y2-2x-4y=0,當(dāng)直線l被圓C所截得的弦長最短時(shí),實(shí)數(shù)m=-1.

分析 利用配方法將圓的方程化為標(biāo)準(zhǔn)式,求出圓心坐標(biāo)和半徑,判斷出直線l過定點(diǎn)且在圓內(nèi),可得當(dāng)l⊥PC時(shí)直線l被圓x2+y2-2x-4y=0截得的弦長最短,即可得出結(jié)論.

解答 解:由C:x2+y2-2x-4y=0得(x-1)2+(y-2)2=5,
∴圓心坐標(biāo)是C(1,2),半徑是$\sqrt{5}$,
∵直線l:mx+y-2m-1=0過定點(diǎn)P(2,1),且在圓內(nèi),
∴當(dāng)l⊥PC時(shí),直線l被圓x2+y2-2x-4y=0截得的弦長最短,
∴-m$•\frac{2-1}{1-2}$=-1,∴m=-1.
故答案為-1.

點(diǎn)評 本題考查直線過圓內(nèi)定點(diǎn)時(shí)所截得弦長問題,以及配方法的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知函數(shù)f(x)=xlnx-ax2在(0,+∞)上單調(diào)遞減,則實(shí)數(shù)a的取值范圍是[$\frac{1}{2}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.對于數(shù)列{an},若存在正整數(shù)T,對于任意正整數(shù)n都有an+T=an成立,則稱數(shù)列{an}是以T為周期的周期數(shù)列.設(shè)b1=m(0<m<1),對任意正整數(shù)n都有${b_{n+1}}=\left\{{\begin{array}{l}{{b_n}-1\;\;({b_n}>1),\;\;\;}\\{\frac{1}{b_n}\;\;\;(0<{b_n}≤1)}\end{array}}\right.$若數(shù)列{bn}是以5為周期的周期數(shù)列,則m的值可以是$\sqrt{2}$-1.(只要求填寫滿足條件的一個(gè)m值即可)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)全集U是實(shí)數(shù)集R,已知集合A={x|x2>2x},B={x|log2(x-1)≤0},則(∁UA)∩B=(  )
A.{x|1<x<2}B.{x|1≤x<2}C.{x|1<x≤2}D.{x|1≤x≤2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知直線2x-$\sqrt{3}$y=0為雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的一條漸近線,則該雙曲線的離心率為$\frac{\sqrt{21}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.某科研小組研究發(fā)現(xiàn):一棵水蜜桃樹的產(chǎn)量ω(單位:千克)與肥料費(fèi)用x(單位:百元)滿足如下關(guān)系:ω=4-$\frac{3}{x+1}$,且投入的肥料費(fèi)用不超過5百元.此外,還需要投入其他成本2x(如是非的人工費(fèi)用等)百元.已知這種水蜜桃的市場價(jià)格為16元/千克(即16百元/百千克),且市場需求始終供不應(yīng)求.記該棵水蜜桃樹獲得的利潤為L(x)(單位:百元).
(1)求利潤函數(shù)L(x)的關(guān)系式,并寫出定義域;
(2)當(dāng)投入的肥料費(fèi)用為多少時(shí),該水蜜桃樹獲得的利潤最大?最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)復(fù)數(shù)z=a+bi(a,b∈R,b>0),且$\overline z={z^2}$,則z的虛部為( 。
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知角A,B,C為等腰△ABC的內(nèi)角,設(shè)向量$\overrightarrow{m}$=(2sinA-sinC,sinB),$\overrightarrow{n}$=(cosC,cosB),且$\overrightarrow{m}$∥$\overrightarrow{n}$,BC=$\sqrt{7}$
(Ⅰ)求角B;
(Ⅱ)在△ABC的外接圓的劣弧$\widehat{AC}$上取一點(diǎn)D,使得AD=1,求sin∠DAC及四邊形ABCD的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若函數(shù)f(x)=1nx-$\frac{1}{e^2}$x+a有零點(diǎn),則實(shí)數(shù)a的取值范圍是( 。
A.(-∞,-1]B.(-∞,1]C.[-1,+∞)D.[1,+∞)

查看答案和解析>>

同步練習(xí)冊答案