3.已知函數(shù)f(x)=lnx-(1+a)x-1,g(x)=-$\frac{lnx}{x}$-a(x+1),其中a∈R
(1)若函數(shù)f(x)在其定義域上不是單調(diào)函數(shù),求實(shí)數(shù)a的取值范圍
(2)如果函數(shù)p(x),q(x)在公共定義域D上滿足p(x)<q(x),那么就稱p(x)為q(x)的“底下函數(shù)”.證明:當(dāng)a<1時,f(x)為g(x)的“底下函數(shù)”

分析 (1)求得f(x)的導(dǎo)數(shù),討論1+a≤0,1+a>0,解不等式可得單調(diào)區(qū)間,即可得到a的范圍;
(2)當(dāng)a<1時,求得g(x)-f(x)=-$\frac{lnx}{x}$+x-lnx+1-a,令h(x)=x-lnx(x>0),求得導(dǎo)數(shù),以及單調(diào)區(qū)間,可得極小值,且為最小值1;令m(x)=$\frac{lnx}{x}$,求得導(dǎo)數(shù)和單調(diào)區(qū)間,可得極大值,且為最大值,由不等式的性質(zhì)即可得證.

解答 解:(1)函數(shù)f(x)=lnx-(1+a)x-1的導(dǎo)數(shù)為
f′(x)=$\frac{1}{x}$-(1+a),x>0,
當(dāng)1+a≤0,即a≤-1時,f′(x)>0,f(x)在(0,+∞)遞增;
當(dāng)1+a>0,即a>-1時,當(dāng)x>$\frac{1}{1+a}$時,f′(x)<0,f(x)遞減;
當(dāng)0<x<$\frac{1}{1+a}$時,f′(x)>0,f(x)遞增.
則實(shí)數(shù)a的取值范圍是(-1,+∞);
(2)證明:當(dāng)a<1時,g(x)-f(x)=-$\frac{lnx}{x}$-a(x+1)-lnx+(1+a)x+1
=-$\frac{lnx}{x}$+x-lnx+1-a,
令h(x)=x-lnx(x>0),h′(x)=1-$\frac{1}{x}$,當(dāng)x>1時,h′(x)>0,h(x)在(1,+∞)遞增;
當(dāng)0<x<1時,h′(x)<0,h(x)在(0,1)遞減.
可得h(x)在x=1處取得最小值,且為1;
令m(x)=$\frac{lnx}{x}$,m′(x)=$\frac{1-lnx}{{x}^{2}}$,當(dāng)x>e時,h′(x)<0,h(x)在(e,+∞)遞減;
當(dāng)0<x<e時,h′(x)>0,h(x)在(0,e)遞增.
可得m(x)在x=e處取得最大值,且為$\frac{1}{e}$,
即有h(x)>m(x)恒成立,即-$\frac{lnx}{x}$+x-lnx>0恒成立,
由1-a>0,可得-$\frac{lnx}{x}$+x-lnx+1-a>0,即g(x)>f(x),
即f(x)<g(x),
故當(dāng)a<1時,f(x)為g(x)在(0,+∞)的“底下函數(shù)”.

點(diǎn)評 本題考查導(dǎo)數(shù)的運(yùn)用:求單調(diào)區(qū)間和極值、最值,考查新定義的理解和運(yùn)用,考查不等式的證明,注意運(yùn)用構(gòu)造函數(shù)法,以及恒成立問題的解法,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.在△ABC中,角A、B、C的對邊分別為a、b、c,關(guān)于x的不等式x2•cosC+4x•sinC+6<0的解集是空集,
(1)求角C的最大值;
(2)若c=$\frac{7}{2}$,三角形的面積S=$\frac{3}{2}\sqrt{3}$,求當(dāng)角C最大時a+b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.正六棱柱的高為5cm,最長的對角線為13cm,則它的表面積為180+108$\sqrt{3}$cm2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.將函數(shù)f(x)=sin(2x+φ)(-$\frac{π}{2}$<φ<$\frac{π}{2}$)的圖象沿x軸向左平移$\frac{π}{8}$個單位后,得到一個偶函數(shù)的圖象,則φ的值為$\frac{π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.對于雙曲線C有命題:若雙曲線C的標(biāo)準(zhǔn)方程是$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0),則雙曲線C的漸近線是bx±ay=0.該命題的逆命題是若雙曲線C的漸近線是bx±ay=0,則雙曲線C的標(biāo)準(zhǔn)方程是$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0);判斷該命題的真假為假.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知命題p:?x0∈R,ax${\;}_{0}^{2}$+2ax0+1≤0.若命題¬p是真命題,則實(shí)數(shù)a的取值范圍是[0,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知cosα=$\frac{4}{5}$,α∈(0,π),則tanα=$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.某城市理論預(yù)測2000年到2004年人口總數(shù)與年份的關(guān)系如表所示
年份200x(年)01234
人口數(shù) y (十萬)5781119
(Ⅰ)請畫出上表數(shù)據(jù)的散點(diǎn)圖;
(Ⅱ)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程;
(Ⅲ)據(jù)此估計2005年該城市人口總數(shù).
參考數(shù)值:0×5+1×7+2×8+3×11+4×19=132,02+12+22+32+42=30,
參考公式:用最小二乘法求線性回歸方程系數(shù)公式 $\hat b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}},\hat a=\overline y-\hat b\overline x$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.由1,$\frac{1}{3}$,$\frac{9}{35}$,$\frac{17}{63}$,$\frac{33}{99}$,…,歸納猜想第n項(xiàng)為$\frac{{2}^{n}+1}{(2n-1)(2n+1)}$.

查看答案和解析>>

同步練習(xí)冊答案