【題目】已知函數(shù)在區(qū)間上有最大值和最小值.設(shè)
(1)求的值
(2)若不等式在上有解,求實數(shù)的取值范圍;
(3)若有三個不同的實數(shù)解,求實數(shù)的取值范圍.
【答案】(1).(2)(3)
【解析】
(1)由函數(shù),所以在區(qū)間上是增函數(shù),故,由此解得的值;
(2)由(1)可得,所以在上有解,等價于在上有解, 即在上有解, 令,則,即可求得的取值范圍;
(3)原方程可化為,令則,有兩個不同的實數(shù)解,其中,或,即可求得實數(shù)的取值范圍.
(1)函數(shù),
,
在區(qū)間上是增函數(shù),
故:,解得.
(2)由(1)可得,
在上有解
等價于在上有解
即在上有解
令,則
,故
記,
的取值范圍為
(3)原方程可化為
令則
有兩個不同的實數(shù)解
其中,或
記
則——①,解得
或——②,不等式組②無實數(shù)解.
實數(shù)的取值范圍為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】 設(shè)函數(shù)
(1)如果,那么實數(shù)___;
(2)如果函數(shù)有且僅有兩個零點,那么實數(shù)的取值范圍是___.
【答案】或4;
【解析】
試題分析:由題意 ,解得或;
第二問如圖:
的圖象是由兩條以 為頂點的射線組成,當(dāng)在A,B 之間(包括不包括)時,函數(shù)和有兩個交點,即有兩個零點.所以 的取值范圍為 .
考點:1.分段函數(shù)值;2.函數(shù)的零點.
【題型】填空題
【結(jié)束】
15
【題目】已知函數(shù)的部分圖象如圖所示.
()求函數(shù)的解析式.
()求函數(shù)在區(qū)間上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線,則下列結(jié)論正確的是( )
A.直線的傾斜角是B.若直線則
C.點到直線的距離是D.過與直線平行的直線方程是
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)有初中學(xué)生1800人,高中學(xué)生1200人.為了解學(xué)生本學(xué)期課外閱讀時間,現(xiàn)采用分層抽樣的方法,從中抽取了100名學(xué)生,先統(tǒng)計了他們課外閱讀時間,然后按“初中學(xué)生”和“高中學(xué)生”分為兩組,再將每組學(xué)生的閱讀時間(單位:小時)分為5組:[0,10),[10,20),[20,30),[30,40),[40,50],并分別加以統(tǒng)計,得到如下圖所示的頻率分布直方圖.
(I)寫出a的值;
(II)試估計該校所有學(xué)生中,閱讀時間不小于30個小時的學(xué)生人數(shù);
(III)從閱讀時間不足10個小時的樣本學(xué)生中隨機抽取3人,并用X表示其中初中生的人數(shù),求X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】漢字聽寫大會不斷創(chuàng)收視新高,為了避免“書寫危機”,弘揚傳統(tǒng)文化,某市大約10萬名市民進行了漢字聽寫測試現(xiàn)從某社區(qū)居民中隨機抽取50名市民的聽寫測試情況,發(fā)現(xiàn)被測試市民正確書寫漢字的個數(shù)全部在160到184之間,將測試結(jié)果按如下方式分成六組:第1組,第2組,,第6組,如圖是按上述分組方法得到的頻率分布直方圖.
若電視臺記者要從抽取的市民中選1人進行采訪,求被采訪人恰好在第2組或第6組的概率;
試估計該市市民正確書寫漢字的個數(shù)的平均數(shù)與中位數(shù);
已知第4組市民中有3名男性,組織方要從第4組中隨機抽取2名市民組成弘揚傳統(tǒng)文化宣傳隊,求至少有1名女性市民的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線(為參數(shù)),曲線,將的橫坐標(biāo)伸長為原來的2倍,縱坐標(biāo)縮短為原來的得到曲線.
(1)求曲線的普通方程,曲線的直角坐標(biāo)方程;
(2)若點為曲線上的任意一點,為曲線上的任意一點,求線段的最小值,并求此時的的坐標(biāo);
(3)過(2)中求出的點做一直線,交曲線于兩點,求面積的最大值(為直角坐標(biāo)系的坐標(biāo)原點),并求出此時直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高三年級有1000人,某次數(shù)學(xué)考試不同成績段的人數(shù).
(1)求該校此次數(shù)學(xué)考試平均成績;
(2)計算得分超過141的人數(shù);
(3)甲同學(xué)每次數(shù)學(xué)考試進入年級前100名的概率是,若本學(xué)期有4次考試, 表示進入前100名的次數(shù),寫出的分布列,并求期望與方差.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司準(zhǔn)備將萬元資金投入到市環(huán)保工程建設(shè)中,現(xiàn)有甲、乙兩個建設(shè)項目選擇,若投資甲項目一年后可獲得的利潤(萬元)的概率分布列如表所示:
且的期望;若投資乙項目一年后可獲得的利潤(萬元)與該項目建設(shè)材料的成本有關(guān),在生產(chǎn)的過程中,公司將根據(jù)成本情況決定是否在第二和第三季度進行產(chǎn)品的價格調(diào)整,兩次調(diào)整相互獨立且調(diào)整的概率分別為和.若乙項目產(chǎn)品價格一年內(nèi)調(diào)整的次數(shù)(次數(shù))與的關(guān)系如表所示:
(Ⅰ)求的值;
(Ⅱ)求的分布列;
(Ⅲ)若該公司投資乙項目一年后能獲得較多的利潤,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com