選修4-5;不等式選講
已知a>0,b>0,a+b=1,求證:
(Ⅰ)
1
a
+
1
b
+
1
ab
≥8;
(Ⅱ)(1+
1
a
)(1+
1
b
)≥9.
考點(diǎn):不等式的證明
專題:證明題,綜合法
分析:(Ⅰ)利用基本不等式,先證明
1
ab
≥4,即可得出結(jié)論;
(Ⅱ)(1+
1
a
)(1+
1
b
)=
1
a
+
1
b
+
1
ab
+1,由(Ⅰ)可知
1
a
+
1
b
+
1
ab
≥8,即可得出結(jié)論.
解答: 證明:(Ⅰ)∵a+b=1,
∴ab≤(
a+b
2
)2
=
1
4
,
1
ab
≥4,∴
1
a
+
1
b
+
1
ab
=
a+b
ab
+
1
ab
=
2
ab
≥8;
(Ⅱ)(1+
1
a
)(1+
1
b
)=
1
a
+
1
b
+
1
ab
+1
由(Ⅰ)可知
1
a
+
1
b
+
1
ab
≥8
1
a
+
1
b
+
1
ab
+1≥9,
∴(1+
1
a
)(1+
1
b
)≥9.
點(diǎn)評(píng):本題考查不等式的證明,考查綜合法的運(yùn)用,考查學(xué)生分析解決問題的能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,E為AD上一點(diǎn),PE⊥平面ABCD,AD∥BC,AD⊥CD,BC=ED=2AE,F(xiàn)為PC上一點(diǎn),且CF=2FP.
(Ⅰ) 求證:PA∥平面BEF;
(Ⅱ)若PE=
3
AE
,求二面角F-BE-C的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,PA⊥底面ABCD,底面ABCD是直角梯形,AB∥CD,∠ADC=90°,AB=2,AD=4,DC=3,PA=5,E∈PC,AC∩BD=F.
(1)若
CE
EP
=
3
2
,求證:EF∥平面PAB;
(2)若FE⊥PC,求二面角E-DB-C的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知四棱錐S-ABCD的底面ABCD是正方形,SA⊥底面ABCD,E是SC上的任意一點(diǎn).
(1)求證:平面EBD⊥平面SAC;
(2)當(dāng)SA=AB時(shí),求二面角B-SC-D的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)求函數(shù)f(x)=(x-1)0+2
x-1
+
1
3-x
的定義域;
(2)若函數(shù)y=f(x)的定義域?yàn)閇-1,1],求函數(shù)y=f(x+
1
4
)•f(x-
1
4
)
的定義域;
(3)求函數(shù)y=
x2-x
x2-x+1
的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=|x-2|+2|x-a|(a∈R).
(Ⅰ)當(dāng)a=1時(shí),解不等式f(x)>3;
(Ⅱ)不等式f(x)≥1在區(qū)間(-∞,+∞)上恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示的多面體中,ABCD是菱形,BDEF是矩形,ED⊥平面ABCD,∠BAD=
π
3
,AD=2.
(1)求證:平面FCB∥平面AED;
(2)若二面角A-EF-C為直二面角,求直線BC與平面AEF所成的角θ的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l1:5x-2y+3m(3m+1)=0和直線l2:2x+6y-3m(9m+20)=0,求:
(1)兩直線l1、l2交點(diǎn)的軌跡方程;
(2)m取何值時(shí),直線l1與l2的交點(diǎn)到直線4x-3y-12=0的距離最短,最短距離是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知an=2nsin2
3
,n∈N*,Sn=a1+a2+…+an
,則S30=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案