已知|
a
|=
3
,|
b
|=2,<
a
,
b
>=30°,求|
a
+
b
|,|
a
-
b
|.
考點(diǎn):平面向量數(shù)量積的運(yùn)算
專題:計(jì)算題,平面向量及應(yīng)用
分析:由向量的數(shù)量積的定義,得到向量a,b的數(shù)量積,可求|
a
+
b
|,|
a
-
b
|的平方,注意運(yùn)用向量的平方即為模的平方,即可得到結(jié)果.
解答: 解:由于|
a
|=
3
,|
b
|=2,<
a
,
b
>=30°,
a
b
=|
a
|•|
b
|•cos30°=2
3
×
3
2
=3.
則|
a
+
b
|2=
a
2+
b
2+2
a
b
=3+4+2×3=13,
即有|
a
+
b
|=
13
;
又|
a
-
b
|2=
a
2+
b
2-2
a
b
=3+4-2×3=1,|
即有
a
-
b
|=1.
點(diǎn)評(píng):本題考查平面向量的運(yùn)用,考查向量的數(shù)量積的定義和性質(zhì):向量的平方即為模的平方,考查運(yùn)算能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
a
b
,其中向量
a
=(m,sin(2x+
π
4
)),
b
=(1+sin(2x+
π
4
),1),x∈R,且函數(shù)y=f(x)的圖象經(jīng)過點(diǎn)(
π
8
,3).
(1)求實(shí)數(shù)m的值;     
(2)求函數(shù)f(x)的最小值及此時(shí)x的值的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知200輛汽車通過某一段公路時(shí)的時(shí)速的頻率分布直方圖如圖所示.
(1)時(shí)速在[60,70]的汽車大約有多少輛?
(2)若時(shí)速大于等于60為超速,則有多少車輛超速?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b∈R+且a+b=1.
(1)求a2+b2的最小值;
(2)求(
1
a2
-1)(
1
b2
-1)
的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

高新開發(fā)區(qū)某公司生產(chǎn)一種品牌筆記本電腦的投入成本是4500元/臺(tái),當(dāng)筆記本電腦銷售價(jià)為6000元/臺(tái)時(shí),月銷售量為a臺(tái);市場分析的結(jié)果表明,如果筆記本電腦的銷售價(jià)提高的百分率為x(0<x<1),那么月銷售量減少的百分率為x2.問這種筆記本電腦的售價(jià)為多少時(shí),電腦企業(yè)的月利潤最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sin(2α+β)=3sinβ,設(shè)tanα=x,tanβ=y,記y=f(x)
(1)求f(x) 的表達(dá)式;
(2)定義正數(shù)數(shù)列{an};a1=
1
2
,an+12=2an•f(an)(n∈N*).試求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(
2
x+1
)=
x
,求f(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知關(guān)于x,y的二元一次不等式組
x+2y≤4
x-y≤1
x+2≥0

(1)求函數(shù)u=3x-y的最大值和最小值;
(2)求函數(shù)z=x+2y+2的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知直線y=
1
2
x與雙曲線y=
k
x
(k>0)交于A、B兩點(diǎn),點(diǎn)B的坐標(biāo)為(-4,-2),C為雙曲線y=
k
x
(k>0)上一點(diǎn),且在第一象限內(nèi),若△AOC面積為6,則點(diǎn)C的坐標(biāo)為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案