分析 (1)利用點到直線距離公式,整理即可求得動點P的軌跡Γ;
(2)①將直線BF:y=-x-1,代入橢圓方程,即可求得B點坐標,利用直線的斜率公式即可求得直線l的方程;
②直線AB方程:y=kx+b,代入橢圓方程,由韋達定理,及∠OFA+∠OFB=180°,則kAF+kBF=0,即可求得b-2k=0,代入直線方程,即可求得直線l總經(jīng)過點M(-2,0);
方法二:設直線AF方程:y=k(x+1),代入橢圓方程利用點斜式方程求得x=$\frac{{x}_{2}{y}_{1}-{x}_{1}{y}_{2}}{{y}_{1}-{y}_{2}}$=$\frac{2{x}_{1}{x}_{2}+{x}_{1}+{x}_{2}}{{x}_{1}+{x}_{2}+2}$,利用韋達定理即可求得x=2,即可求得直線l總經(jīng)過點M(-2,0).
解答 解:(1)設P(x,y),則$\frac{丨x+2丨}{\sqrt{(x+1)^{2}+{y}^{2}}}$=$\sqrt{2}$,
整理得:$\frac{{x}^{2}}{2}+{y}^{2}=1$,
∴動點P的軌跡Γ$\frac{{x}^{2}}{2}+{y}^{2}=1$;
(2)①A(0,1),F(xiàn)(-1,0),則kAF=1,kBF=-1,直線BF:y=-x-1,
$\left\{\begin{array}{l}{y=-x-1}\\{\frac{{x}^{2}}{2}+{y}^{2}=1}\end{array}\right.$,整理得:3x2+4x=0,解得:x=0,x=-$\frac{4}{3}$,
代入y=-x-1,
解得:$\left\{\begin{array}{l}{x=0}\\{y=-1}\end{array}\right.$(舍),$\left\{\begin{array}{l}{x=-\frac{4}{3}}\\{y=\frac{1}{3}}\end{array}\right.$,則B(-$\frac{4}{3}$,$\frac{1}{3}$),
kAB=$\frac{1-\frac{1}{3}}{0-(-\frac{4}{3})}$=$\frac{1}{2}$,
直線AB:y=$\frac{1}{2}$x+1,
②設方法一:A(x1,y1),B(x2,y2),直線AB方程:y=kx+b,
則$\left\{\begin{array}{l}{y=kx+b}\\{\frac{{x}^{2}}{2}+{y}^{2}=1}\end{array}\right.$,(k2+$\frac{1}{2}$)x2+2kbx+b2-1=0,
由韋達定理可知:x1+x2=-$\frac{2kb}{{k}^{2}+\frac{1}{2}}$,x1x2=$\frac{^{2}-1}{{k}^{2}+\frac{1}{2}}$,
由∠OFA+∠OFB=180°,則kAF+kBF=$\frac{{y}_{1}}{{x}_{1}+1}$+$\frac{{y}_{2}}{{x}_{2}+1}$=$\frac{k{x}_{1}+b}{{x}_{1}+1}$+$\frac{k{x}_{2}+b}{{x}_{2}+1}$=$\frac{(k{x}_{1}+b)({x}_{2}+1)+(k{x}_{2}+b)({x}_{1}+1)}{({x}_{1}+1)({x}_{2}+1)}$=0,
則2kx1x2+(k+b)(x1+x2)+2b=2k×$\frac{^{2}-1}{{k}^{2}+\frac{1}{2}}$-(k+b)×$\frac{2kb}{{k}^{2}+\frac{1}{2}}$+2b=0,
則b-2k=0,
∴直線AB方程:y=k(x+2),直線l總經(jīng)過點M(-2,0).
解法二:由于OFA+∠OFB=180°,則B關于x軸的對稱點B1在直線AF上,
設A(x1,y1),B(x2,y2),B1(x2,-y2)
設直線AF方程:y=k(x+1),
代入$\frac{{x}^{2}}{2}+{y}^{2}=1$;得:
(k2+$\frac{1}{2}$)x2+2kx+k2-1=0,
由韋達定理可知:x1+x2=-$\frac{2{k}^{2}}{{k}^{2}+\frac{1}{2}}$,x1x2=$\frac{{k}^{2}-1}{{k}^{2}+\frac{1}{2}}$,
則kAB=$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}$,AB的方程為:y-y1=$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}$(x-x1),令y=0,得:x=x1-y1×$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}$=$\frac{{x}_{2}{y}_{1}-{x}_{1}{y}_{2}}{{y}_{1}-{y}_{2}}$,
y1=k(x1+1),-y2=k(x2+1),
x=$\frac{{x}_{2}{y}_{1}-{x}_{1}{y}_{2}}{{y}_{1}-{y}_{2}}$=$\frac{2{x}_{1}{x}_{2}+{x}_{1}+{x}_{2}}{{x}_{1}+{x}_{2}+2}$=2,
∴直線l總經(jīng)過定點M(-2,0).
點評 本題考查直線與橢圓的位置關系,考查韋達定理,直線的斜率公式,點斜式方程,考查計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -1 | B. | 0 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{3\sqrt{5}}{2}$ | B. | $\frac{3\sqrt{5}}{8}$ | C. | $\frac{9}{2}$ | D. | $\frac{9}{8}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ① | B. | ③ | C. | ①③ | D. | ①② |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com