19.某同學(xué)在研究性學(xué)習(xí)中,收集到某制藥廠今年前5個(gè)月甲膠囊生產(chǎn)產(chǎn)量(單位:萬盒)的數(shù)據(jù)如表所示:
 x(月份) 1 2 3 4 5
 y(萬盒) 4 4 5 6
若x,y線性相關(guān),線性回歸方程為$\stackrel{∧}{y}$=0.6x+$\stackrel{∧}{a}$,估計(jì)該藥廠6月份生產(chǎn)甲膠囊產(chǎn)量為( 。
A.6.8萬盒B.7.0萬盒C.7.2萬盒D.7.4萬盒

分析 由數(shù)據(jù)求得樣本中心點(diǎn)($\overline{x}$,$\overline{y}$),代入回歸直線方程求得$\stackrel{∧}{a}$,求得回歸直線方程,將x=6,代入即可求得該藥廠6月份生產(chǎn)甲膠囊產(chǎn)量.

解答 解:$\overline{x}$=$\frac{1+2+3+4+5}{5}$=3,$\overline{y}$=$\frac{4+4+5+6+6}{5}$=5,
由回歸直線方程過樣本中心點(diǎn)($\overline{x}$,$\overline{y}$),
$\stackrel{∧}{a}$=$\overline{y}$-0.6$\overline{x}$=3.2,
線性回歸方程為$\stackrel{∧}{y}$=0.6x+3.2,
由當(dāng)x=6時(shí),y=6.8,
故答案選:A.

點(diǎn)評(píng) 本題考查了線性回歸方程經(jīng)過樣本中心的特點(diǎn),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知命題p:?x<-1,x2>1,則命題¬p是(  )
A.:?x≥-1,x2≤1B.?x<-1,x2≤1C.:?x<-1,x2≤1D.?x≥-1,x2≤1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),已知向量$\overrightarrow{a}$=(-1,2),又點(diǎn)A(8,0),B(n,t),C(ksinθ,t).(1)若 $\overrightarrow{AB}$⊥$\overrightarrow{a}$,且|$\overrightarrow{AB}$|=$\sqrt{5}$|$\overrightarrow{OA}$|,求向量 $\overrightarrow{OB}$;
(2)若向量 $\overrightarrow{AC}$與向量 $\overrightarrow{a}$共線,常數(shù)k>0,求f(θ)=tsinθ的值域;
(3)當(dāng)(2)問中f(θ)的最大值4時(shí),求 $\overrightarrow{OA}$•$\overrightarrow{OC}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若tanα=2,則sin2α=( 。
A.$-\frac{2}{5}$B.$-\frac{4}{5}$C.$\frac{2}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.某苗圃對(duì)一批即將出售的樹苗進(jìn)行了抽樣統(tǒng)計(jì),得到苗高(單位:cm)的頻率分布直方圖如圖.若苗高屬于區(qū)間[100,104)的有4株,則苗高屬于區(qū)間[112,116]的有11株.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=(x-a)2lnx(a為常數(shù)).
(Ⅰ)若f(x)在(1,f(1))處的切線與直線2x+2y-3=0垂直.
(。┣髮(shí)數(shù)a的值;
(ⅱ)若a非正,比較f(x)與x(x-1)的大小;
(Ⅱ)如果0<a<1,判斷f(x)在(a,1)上是否有極值,若有極值是極大值還是極小值?若無極值,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.高二學(xué)生即將升入高三,高三學(xué)生參加高校自主招生考試是升入理想大學(xué)的一條途徑.甲、乙、丙三位同學(xué)一起參某高校組織的自主招生考試,考試分筆試和面試兩部分,筆試和面試均合格者將成為該校的預(yù)錄取生(可在高考中加分錄。瑑纱慰荚囘^程相互獨(dú)立,根據(jù)甲中、乙、丙三位同學(xué)的平時(shí)成績(jī)分析,甲,乙,丙三位同學(xué)能通過筆試的概率分別是$\frac{1}{3}$,$\frac{1}{2}$,$\frac{1}{5}$;能通過面試的概率分別是$\frac{1}{5}$,$\frac{1}{4}$,$\frac{1}{2}$.
(1)求甲、乙、丙三位同學(xué)恰有兩位通過筆試的概率;
(2)設(shè)甲、乙、丙三位同學(xué)各自經(jīng)過兩次考試后,能被該高校錄取的人數(shù)為X,求隨機(jī)變量X的分布列和數(shù)學(xué)期望E(X).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知正數(shù)數(shù)列{an}的前n項(xiàng)和為Sn,點(diǎn)P(an,Sn)在函數(shù)f(x)=$\frac{1}{2}$x2+$\frac{1}{2}$x上,已知b1=1,3bn-2bn-1=0(n≥2,n∈N*),
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若cn=anbn,求數(shù)列{cn}的前n項(xiàng)和Tn;
(3)是否存在整數(shù)m,M,使得m<Tn<M對(duì)任意正整數(shù)n恒成立,且M-m=9,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.某地隨著經(jīng)濟(jì)的發(fā)展,居民收入逐年增長,如表是該地一建設(shè)銀行連續(xù)五年的儲(chǔ)蓄存款(年底余額)如表1:

表1
 年份x 2011 2012 2013 2014 2015
 儲(chǔ)蓄存款y(千億元) 5 6 7 8 10
為了研究計(jì)算的方便,工作人員將上表的數(shù)據(jù)進(jìn)行了處理,t=x-2012,z=y-5得到如表2:
表2
 時(shí)間代號(hào)t 1 3 4 5
 z 0 1 2 3 5
(1)求z關(guān)于t的線性回歸方程;
(2)通過(1)中的方程,求出y關(guān)于x的回歸方程;
(3)用所求回歸方程預(yù)測(cè)到2020年底,該地儲(chǔ)蓄存款額可達(dá)多少?
(附:對(duì)于線性回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$,其中$\widehat$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$)

查看答案和解析>>

同步練習(xí)冊(cè)答案