分析 【方法一】兩次利用基本不等式,即可求出最小值,需要注意不等式等號成立的條件是什么.
【方法二】將$\frac{1}{ab}$拆成$\frac{1}{2ab}$+$\frac{1}{2ab}$,利用柯西不等式求出最小值.
解答 解:【解法一】a,b∈R,ab>0,
∴$\frac{{a}^{4}+4^{4}+1}{ab}$≥$\frac{2\sqrt{{a}^{4}•{4b}^{4}}+1}{ab}$
=$\frac{{{4a}^{2}b}^{2}+1}{ab}$
=4ab+$\frac{1}{ab}$≥2$\sqrt{4ab•\frac{1}{ab}}$=4,
當(dāng)且僅當(dāng)$\left\{\begin{array}{l}{{a}^{4}={4b}^{4}}\\{4ab=\frac{1}{ab}}\end{array}\right.$,
即$\left\{\begin{array}{l}{{a}^{2}={2b}^{2}}\\{{{a}^{2}b}^{2}=\frac{1}{4}}\end{array}\right.$,
即a=$\frac{1}{\root{4}{2}}$,b=$\frac{1}{\root{4}{8}}$或a=-$\frac{1}{\root{4}{2}}$,b=-$\frac{1}{\root{4}{8}}$時取“=”;
∴上式的最小值為4.
【解法二】a,b∈R,ab>0,
∴$\frac{{a}^{4}+4^{4}+1}{ab}$=$\frac{{a}^{3}}$+$\frac{{4b}^{3}}{a}$+$\frac{1}{2ab}$+$\frac{1}{2ab}$≥4$\root{4}{\frac{{a}^{3}}•\frac{{4b}^{3}}{a}•\frac{1}{2ab}•\frac{1}{2ab}}$=4,
當(dāng)且僅當(dāng)$\left\{\begin{array}{l}{{a}^{4}={4b}^{4}}\\{4ab=\frac{1}{ab}}\end{array}\right.$,
即$\left\{\begin{array}{l}{{a}^{2}={2b}^{2}}\\{{{a}^{2}b}^{2}=\frac{1}{4}}\end{array}\right.$,
即a=$\frac{1}{\root{4}{2}}$,b=$\frac{1}{\root{4}{8}}$或a=-$\frac{1}{\root{4}{2}}$,b=-$\frac{1}{\root{4}{8}}$時取“=”;
∴上式的最小值為4.
故答案為:4.
點評 本題考查了基本不等式的應(yīng)用問題,是中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | p∧q | B. | p∧¬q | C. | ¬p∧q | D. | ¬p∧¬q |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ω=$\frac{2}{3}$,φ=$\frac{π}{12}$ | B. | ω=$\frac{2}{3}$,φ=-$\frac{11π}{12}$ | C. | ω=$\frac{1}{3}$,φ=-$\frac{11π}{24}$ | D. | ω=$\frac{1}{3}$,φ=$\frac{7π}{24}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com