5.已知兩直線l1:ax-y+2=0和l2:x+y-a=0的交點在第一象限,則實數(shù)a的取值范圍是a>2.

分析 聯(lián)立方程組解出交點坐標,解不等式即可解決.

解答 解:由直線l1:ax-y+2=0和l2:x+y-a=0,得x=$\frac{a-2}{a+1}$,y=$\frac{{a}^{2}-2a+2}{a+1}$.
∵兩直線l1:ax-y+2=0和l2:x+y-a=0的交點在第一象限,
∴$\frac{a-2}{a+1}$>0,$\frac{{a}^{2}-2a+2}{a+1}$.>0,
解得:a>2.
故答案為a>2.

點評 本題主要考查直線交點坐標的求解,和不等式的應用.屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

15.已知集合A={1,2,3,4},B={2,4,6},則A∩B的元素個數(shù)( 。
A.0個B.2個C.3個D.5個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知定圓⊙F1:x2+y2+4x+3=0,⊙F2:x2+y2-4x-5=0,動圓M與圓F1、F2都外切或都內切.
(1)求動圓圓心M的軌跡曲線C的方程.
(2)過點F1的直線l與曲線C交于A、B兩點,與⊙F2交于P、Q兩點,若|PQ|=2,求|AB|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知函數(shù)f(x)是偶函數(shù),當x>0時,f(x)=$\frac{a{x}^{2}}{x+1}$.若曲線y=f(x)在點(-1,f(-1))處切線的斜率為-1,則實數(shù)a的值為( 。
A.-$\frac{3}{4}$B.$\frac{4}{3}$C.$\frac{3}{2}$D.-$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.如果對定義在R上的函數(shù)f(x),對任意兩個不相等的實數(shù)x1,x2都有x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1),則稱函數(shù)f(x)“H函數(shù)”.下列函數(shù)是“H函數(shù)”的所有序號為①③.
①y=ex+x;②y=x2;③y=3x-sinx;④$\left\{\begin{array}{l}ln|x|,x≠0\\ 0,x=0\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知點H(-1,0),動點P是y軸上除原點外的一點,動點M滿足PH⊥PM,且PM與x軸交于點Q,Q是PM的中點.
(1)求動點M的軌跡E的方程;
(2)已知直線l1:x=my+$\frac{1}{8}$與曲線E交于A,C兩點,直線l2與l1關于x軸對稱,且交曲線E于B,D兩點,試用m表示四邊形ABCD的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.某高校青年志愿者協(xié)會,組織大一學生開展一次愛心包裹勸募活動,將派出的志愿者,分成甲、乙兩個小組,分別在兩個不同的場地進行勸募,每個小組各6人,愛心人士每捐購一個愛心包裹,志愿者就將送出一個鑰匙扣作為紀念,莖葉圖記錄了這兩個小組成員某天勸募包裹時送出鑰匙扣的個數(shù),且圖中乙組的一個數(shù)據(jù)模糊不清,用x表示,已知甲組送出鑰匙扣的平均數(shù)比乙組的平均數(shù)少一個.
(1)求圖中x的值;
(2)在乙組的數(shù)據(jù)中任取兩個,寫出所有的基本事件并求兩數(shù)據(jù)都大于甲組增均數(shù)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.如圖,正方體ABCD-A1B1C1D1中,E、F,M分別是AB,AM,AA1的中點,P,Q分別是A1B1,A1D1上的動點(不與A1重合),且A1P=A1Q.
(1)求證:EF∥平面MPQ;
(2)當平面MPQ與平面EFM所成二面角為直二面角時,求二面角E-MP-F的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.比較大。篶os(-508°)<cos(-144°).( 填>,<或=)

查看答案和解析>>

同步練習冊答案