分析 求出函數(shù)的導(dǎo)數(shù),通過討論a的范圍,判斷導(dǎo)函數(shù)的符號(hào),從而求出函數(shù)的單調(diào)性即可.
解答 解:f(x)的定義域是(0,+∞),
f′(x)=$\frac{3}{x}$-ax-2=$\frac{-{ax}^{2}-2x+3}{x}$,
令g(x)=-ax2-2x+3,
(1)a=0時(shí),g(x)=-2x+3,
令g(x)>0,解得:0<x<$\frac{3}{2}$,
令g′(x)<0,解得:x>$\frac{3}{2}$,
∴f(x)在(0,$\frac{3}{2}$)遞增,在($\frac{3}{2}$,+∞)遞減,
(2)a≠0時(shí),g(x)是二次函數(shù),△=4+12a,
①a>0時(shí),△>0,圖象開口向下,g(x)=0兩個(gè)根,
令g′(x)=0,解得:x=-$\frac{1±\sqrt{1+3a}}{a}$<0,
∴f(x)在(0,+∞)遞減,
②-$\frac{1}{3}$<a<0時(shí),△>0,圖象開口向上,g(x)=0兩個(gè)根,
令g′(x)=0,解得:x=-$\frac{1±\sqrt{1+3a}}{a}$,
而-$\frac{1-\sqrt{1+3a}}{a}$<0,-$\frac{1+\sqrt{1+3a}}{a}$>0,
∴f(x)在(0,-$\frac{1+\sqrt{1+3a}}{a}$)遞減,在(-$\frac{1+\sqrt{1+3a}}{a}$,+∞)遞增,
③a≤-$\frac{1}{3}$時(shí),△≤0,g(x)開口向上,
g(x)>0恒成立,
故f(x)在(0,+∞)遞增.
點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性問題,考查導(dǎo)數(shù)的應(yīng)用以及分類討論思想、二次函數(shù)的性質(zhì),是一道中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2}{3}$ | B. | $\frac{3}{4}$ | C. | $\frac{\sqrt{5}}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{\sqrt{2}}}{3}$ | B. | -$\frac{1}{3}$ | C. | $\frac{1}{3}$ | D. | $±\frac{{2\sqrt{2}}}{3}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com