14.在梯形ABCD中,AB∥CD,AB=1,AC=2,BD=2$\sqrt{3}$,∠ACD=60°,則AD=(  )
A.2B.$\sqrt{7}$C.$\sqrt{19}$D.$13-6\sqrt{3}$

分析 由余弦定理先求出BC=$\sqrt{3}$,再由勾股定理求出$∠ABC=∠BCD=\frac{π}{2}$,從而CD=3,由此利用余弦定理能求出AD=$\sqrt{9+4-2×3×2×cos60°}$=$\sqrt{7}$.

解答 解:∵在梯形ABCD中,AB∥CD,AB=1,AC=2,BD=2$\sqrt{3}$,∠ACD=60°,
∴∠BAC=60°,∴BC=$\sqrt{4+1-2×2×1×cos60°}$=$\sqrt{3}$,
∴AB2+BC2=AC2,∴$∠ABC=∠BCD=\frac{π}{2}$,
∴CD=$\sqrt{(2\sqrt{3})^{2}-(\sqrt{3})^{2}}$=3,
∴AD=$\sqrt{9+4-2×3×2×cos60°}$=$\sqrt{7}$.
故選:B.

點評 本題考查三角形邊長的求法,涉及到正弦定理、余弦定理等基礎(chǔ)知識,考查推理論證能力、運算求解能力,考查函數(shù)與方思想、數(shù)形結(jié)合思想,是中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

4.不等式32x+a•3x+b<0(a、b∈R)的解集是{x|0<x<3},則a+b等于-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.已知f(x)=|ax-4|-|ax+8|,a∈R,若f(x)≤k恒成,求k的取值范圍[12,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.根據(jù)如圖所示的等高條形圖回答,吸煙與患肺病有關(guān)系.(“有”或“沒有”)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.執(zhí)行如圖所示的程序框圖,若輸出的結(jié)果為S=1320,則判斷框內(nèi)應(yīng)填入的內(nèi)容是(  )
A.K<9?B.K<10?C.K<11?D.K<12?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.已知正三棱錐A-BCD中,BC=3$\sqrt{2}$,AB=2$\sqrt{6}$,則三棱錐外接球的表面積為32π.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知過曲線$\left\{\begin{array}{l}{x=3sinθ}\\{y=3cosθ}\end{array}\right.$(θ為參數(shù),0≤θ≤π)上一點P與原點O的直線PO的傾斜角為$\frac{π}{2}$,則P點坐標是( 。
A.(0,3)B.$(-\frac{12}{5},-\frac{12}{5})$C.(-3,0)D.$(\frac{12}{5},\frac{12}{5})$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知函數(shù)g(x)=1-cos(πx+ϕ)(0≤ϕ<π)的圖象過($\frac{1}{2}$,2),若有4個不同的正數(shù)xi滿足g(xi)=M(0<M<1),且xi<4(i=1,2,3,4),則從這四個數(shù)中任意選出兩個,它們的和不超過5的概率為(  )
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知銳角三角形ABC的內(nèi)角A,B,C的對邊分別為a,b,c且b=acosC+$\frac{\sqrt{3}}{3}$csinA,
(1)求角A的值;
(2)若a=2,求△ABC面積的最大值.

查看答案和解析>>

同步練習冊答案