5.已知f(x)=|ax-4|-|ax+8|,a∈R,若f(x)≤k恒成,求k的取值范圍[12,+∞).

分析 f(x)≤k恒成立,等價(jià)于k≥f(x) max,由此求得實(shí)數(shù)k的取值范圍.

解答 解:因?yàn)閒(x)=|ax-4|-|ax+8|≤|(ax-4)-(ax+8)|=12,
當(dāng)且僅當(dāng)ax≤-8時(shí)取等號(hào).
所以f(x)的最大值為12.
故k的取值范圍是[12,+∞).
故答案為:[12,+∞).

點(diǎn)評(píng) 本題主要考查絕對(duì)值的意義,體現(xiàn)了等價(jià)轉(zhuǎn)化的數(shù)學(xué)思想,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知曲線${C_1}:\left\{\begin{array}{l}x=1+\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t\end{array}\right.$(t為參數(shù)),以原點(diǎn)為極點(diǎn),以x正半軸為極軸,建立極坐標(biāo)系,曲線${C_2}:\frac{1}{ρ^2}=\frac{{{{cos}^2}θ}}{2}+{sin^2}θ$.
(Ⅰ)寫出曲線C1的普通方程,曲線C2的直角坐標(biāo)方程;
(Ⅱ)若M(1,0),且曲線C1與曲線C2交于兩個(gè)不同的點(diǎn)A,B,求$\frac{|MA|•|MB|}{|AB|}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.在公差不為0的等差數(shù)列{an}中,a22=a3+a6,且a3為a1與a11的等比中項(xiàng).
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=(-1)n$\frac{n}{({a}_{n}-\frac{1}{2})({a}_{n+1}-\frac{1}{2})}$,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.在平面直角坐標(biāo)系中.圓C的參數(shù)方程為$\left\{\begin{array}{l}{x=2cosα}\\{y=3+2sinα}\end{array}\right.$(α為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,點(diǎn)D的極坐標(biāo)為(ρ1,π).
(1)求圓C的極坐標(biāo)方程;
(2)過(guò)點(diǎn)D作圓C的切線,切點(diǎn)分別為A,B,且∠ADB=60°,求ρ1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知函數(shù)f(x)=|x-2|+|x-4|的最小值為m,正實(shí)數(shù)a,b滿足a+b=m.
(1)求m的值;
(2)求證:$\frac{1}{a}+\frac{1}$≥2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)P滿足|PF1|-|PF2|=2a,若$\overrightarrow{PM}$+$\overrightarrow{{F}_{1}M}$=$\overrightarrow{0}$,且M(0,b),則雙曲線C的漸近線方程為(  )
A.y=±2xB.y=±$\sqrt{5}$xC.y=±2$\sqrt{2}$xD.y=±$\sqrt{3}$x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)$f(x)=\sqrt{1+{x^2}}$,x∈R.
(1)證明對(duì)?a、b∈R,且a≠b,總有:|f(a)-f(b)|<|a-b|;
(2)設(shè)a、b、c∈R,且$a+b+c=f(2\sqrt{2})$,證明:a+b+c≥ab+bc+ca.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.在梯形ABCD中,AB∥CD,AB=1,AC=2,BD=2$\sqrt{3}$,∠ACD=60°,則AD=(  )
A.2B.$\sqrt{7}$C.$\sqrt{19}$D.$13-6\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.根據(jù)如圖所示的偽代碼知,輸出的a的值為21.

查看答案和解析>>

同步練習(xí)冊(cè)答案