8.若復(fù)數(shù)z滿足條件z-3=$\frac{3+i}{i}$,則|z|=5.

分析 利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡,再由復(fù)數(shù)求模公式計(jì)算得答案.

解答 解:∵$\frac{3+i}{i}=\frac{-i(3+i)}{-{i}^{2}}=1-3i=z-3$,
∴z=4-3i.
則|z|=$\sqrt{{4}^{2}+(-3)^{2}}=5$.
故答案為:5.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)模的求法,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若0<m<n<2,e為自然對(duì)數(shù)的底數(shù),則下列各式中一定成立的是( 。
A.men<nemB.men>nemC.mlnn>nlnmD.mlnn<nlnm

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知集合A={-1,1,2,3},B={x|x∈R,x2<3},則A∩B={-1,1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知雙曲線過點(diǎn)(2,3),其中一條漸近線方程為$y=\sqrt{3}x$,則雙曲線的標(biāo)準(zhǔn)方程是(  )
A.$\frac{{7{x^2}}}{16}-\frac{y^2}{12}=1$B.$\frac{y^2}{3}-\frac{x^2}{2}=1$C.${x^2}-\frac{y^2}{3}=1$D.$\frac{{3{y^2}}}{23}-\frac{x^2}{23}=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)集合A={x|x2+x-6<0},B={x|1≤x≤3},則A∩B=(  )
A.[1,2]B.[1,2)C.[2,3]D.(2,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=$\frac{{x}^{3}}{3}$-x2-ax+ln(ax+1)(a∈R).
(Ⅰ)若x=2為f(x)的極值點(diǎn),求a的值;
(Ⅱ)若f(x)在[3,+∞)單調(diào)遞增,求a的取值范圍.
(Ⅲ)當(dāng)a=-1時(shí),方程f(x)=$\frac{{x}^{3}}{3}$+$\frac{1-x}$有實(shí)數(shù)根,求b的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且a1=10,S5≥S6,下列四個(gè)命題中,假命題是( 。
A.公差d的最大值為-2B.S7<0
C.記Sn的最大值為K,K的最大值為30D.a2016>a2017

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=ex(x2+ax+a)(a∈R)
(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)若a=-1,判斷f(x)是否存在最小值,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知定義在R上的函數(shù)f(x)=x2-cosx,若a=f(30.3),b=f(logπ3),c=f(log3$\frac{1}{9}$),則a,b,c的大小關(guān)系是( 。
A.a>b>cB.c>b>aC.c>a>bD.a>c>b

查看答案和解析>>

同步練習(xí)冊(cè)答案