8.已知方程x2+(4+i)x+4+ai=0(a∈R)有實(shí)根b,且z=a+bi,則復(fù)數(shù)z的共軛復(fù)數(shù)等于( 。
A.2-2iB.2+2iC.-2+2iD.-2-2i

分析 由復(fù)數(shù)相等的意義將方程x2+(4+i)x+4+ai=0(a∈R)轉(zhuǎn)化為實(shí)系數(shù)方程,解方程求出兩根.

解答 解:方程x2+(4+i)x+4+ai=0(a∈R)可以變?yōu)閤2+4x+4+i(x+a)=0,
 由復(fù)數(shù)相等的意義得$\left\{\begin{array}{l}{{x}^{2}+4x+4=0}\\{x+a=0}\end{array}\right.$解得x=-2,a=2,
 方程x2+(4+i)x+4+ai=0(a∈R)有實(shí)根b,故b=-2,
 所以復(fù)數(shù)z=2-2i,
所以復(fù)數(shù)z的共軛復(fù)數(shù)等于2+2i
 故選:B.

點(diǎn)評 本題考查復(fù)數(shù)相等的意義,兩個(gè)復(fù)數(shù)相等,則它們的實(shí)部與實(shí)部相等,虛部與虛部相等.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若復(fù)數(shù)z滿足$\frac{1-z}{1+z}=i$,則|$\overline{z}$-2|的值為$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知A,B,C不共線,對空間任意一點(diǎn)O,若$\overrightarrow{OP}$=$\frac{1}{2}$$\overrightarrow{OA}$+($\frac{1}{4}$-λ)$\overrightarrow{OB}$+(λ+$\frac{1}{4}$)$\overrightarrow{OC}$成立,則“λ=1”是“P,A,B,C四點(diǎn)共面”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既非充分也非必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=|x-2|.
(1)若對任意的a,b,c∈R(a≠c),不等式$\frac{1}{2}$f(m)≤$\frac{|a-b|+|c-d|}{|a-c|}$恒成立,求實(shí)數(shù)m的最大值;
(2)在(1)的條件下,解不等式f(x)≤2-|x-m|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,在平面直角坐標(biāo)系xOy中,已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的焦距為2,過右焦點(diǎn)F的直線l交橢圓于A、B兩點(diǎn),當(dāng)l與x軸垂直時(shí),AB長為$\frac{{4\sqrt{3}}}{3}$.   
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若橢圓上存在一點(diǎn)P,使得$\overrightarrow{OP}=\overrightarrow{OA}+\overrightarrow{OB}$,求直線l的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知集合M={x|x2<1},N={x|2x>1},則M∩N=(  )
A.B.{x|0<x<1}C.{x|x<0}D.{x|x<1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知集合A={x|x2-3x+2<0},B={x|a-1<x<3a+1}.
(1)當(dāng)a=$\frac{1}{4}$時(shí),求A∩B;
(2)命題p:x∈A,命題q:x∈B,若q是p的必要條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知集合A={0,2,4,6},B={x∈N|2x≤33},則集合A∩B的子集個(gè)數(shù)為(  )
A.6B.7C.8D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.設(shè)F為拋物線y2=4x的焦點(diǎn),A,B,C為該拋物線上不同的三點(diǎn),$\overrightarrow{FA}+\overrightarrow{FB}+\overrightarrow{FC}=\overrightarrow 0$,O為坐標(biāo)原點(diǎn),且△OFA、△OFB、△OFC的面積分別為S1、S2、S3,則$S_1^2+S_2^2+S_3^2$=3.

查看答案和解析>>

同步練習(xí)冊答案