20.已知集合A={x|x2-3x+2<0},B={x|a-1<x<3a+1}.
(1)當(dāng)a=$\frac{1}{4}$時,求A∩B;
(2)命題p:x∈A,命題q:x∈B,若q是p的必要條件,求實數(shù)a的取值范圍.

分析 (1)當(dāng)a=$\frac{1}{4}$時,求出集合B,根據(jù)集合的基本運算即可求A∩B:
(2)根據(jù)命題充分條件和必要條件的定義和關(guān)系,即可求實數(shù)a的取值范圍.

解答 解:(1)A={x|x2-3x+2<0}=(1,2),
B={x|a-1<x<3a+1}=(-$\frac{3}{4}$,$\frac{7}{4}$),
∴A∩B=(1,$\frac{7}{4}$),
(2)根據(jù)條件知,若x∈A,則x∈B,q是p的必要條件
∴A⊆B;
∴$\left\{\begin{array}{l}{a-1≤1}\\{3a+1≥2}\end{array}\right.$,
解得$\frac{1}{3}$≤a≤2,
故a的取值范圍為[$\frac{1}{3}$,2]

點評 本題主要考查集合的基本運算以及充分條件和必要條件的應(yīng)用,利用不等式的性質(zhì)是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.定義在R上的函數(shù)f(x)的導(dǎo)函數(shù)是f′(x),若f(x)=f(2-x),且當(dāng)x∈(-∞,1)時,(x-1)f′(x)<0設(shè)a=f($\frac{1}{e}$),b=f($\sqrt{2}$),c=f(log28),則( 。
A.c<a<bB.a>b>cC.a<b<cD.a<c<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.函數(shù)y=x+$\frac{|2x|}{2x}$的圖象是圖中的(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知方程x2+(4+i)x+4+ai=0(a∈R)有實根b,且z=a+bi,則復(fù)數(shù)z的共軛復(fù)數(shù)等于( 。
A.2-2iB.2+2iC.-2+2iD.-2-2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.《張丘建算經(jīng)》卷上第22題為:“今有女善織,日益功疾,且從第2天起,每天比前一天多織相同量的布,若第一天織5尺布,現(xiàn)有一月(按30天計),共織390尺布”,則該女最后一天織多少尺布?(  )
A.18B.20C.21D.25

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)m、n是兩條不同的直線,α、β是兩個不同的平面,給出下列四個命題:①若m⊥α,n∥α,則m⊥n;②若m∥n,n∥α,則m∥α;③若m∥n,n⊥β,m∥α,則α⊥β;④若m∩n=A,m∥α,m∥β,n∥α,n∥β,則α∥β.其中真命題的個數(shù)是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知函數(shù)f(x)在區(qū)間(-1,0)和(1,+∞)上遞增,在區(qū)間(-∞,-1)和(0,1)上遞減,則f(x)的解析式可以是f(x)=|x2-1|.(只需寫出一個符合題意的解析式)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.對于回歸分析,下列說法錯誤的是( 。
A.在回歸分析中,變量間的關(guān)系若是非確定性關(guān)系,則因變量不能由自變量唯一確定
B.線性相關(guān)系數(shù)可以是正的或負(fù)的
C.回歸分析中,如果r2=1,說明x與y之間完全線性相關(guān)
D.樣本相關(guān)系數(shù)r∈(-∞,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.下列說法正確的是( 。
A.小明身高1.78 m,則他應(yīng)該是高個子的總體這一集合中的一個元素
B.所有大于0小于10的實數(shù)可以組成一個集合,該集合有9個元素
C.平面上到定直線的距離等于定長的所有點的集合是一條直線
D.任意改變一個集合中元素的順序,所得集合仍和原來的集合相等

查看答案和解析>>

同步練習(xí)冊答案