6.現(xiàn)有兩個推理:
①在平面內(nèi)“三角形的兩邊之和大于第三邊”類比在空間中“四面體的任意三個面的面積之和大于第四個面的面積”;
②由“若數(shù)列{an}為等差數(shù)列,則有$\frac{{a}_{6}+{a}_{7}+…+{a}_{10}}{5}$=$\frac{{a}_{1}+{a}_{2}+…+{a}_{15}}{15}$成立”類比“若數(shù)列{bn}為等比數(shù)列,則有$\root{5}{_{6}_{7}…_{10}}$=$\root{15}{_{1}_{2}…_{15}}$成立”
則關(guān)于兩個推理( 。
A.都正確B.只有②正確C.只有①正確D.都不正確

分析 分別判斷兩個推理,即可得出結(jié)論.

解答 解:①在四面體ABCD中,設(shè)點(diǎn)A在底面上的射影為O,則三個側(cè)面的面積都大于在底面上的投影的面積,故三個側(cè)面的面積之和一定大于底面的面積,故①正確
由“若數(shù)列{an}為等差數(shù)列,則有$\frac{{a}_{6}+{a}_{7}+…+{a}_{10}}{5}$=$\frac{{a}_{1}+{a}_{2}+…+{a}_{15}}{15}$立”,利用和與積,類比“若數(shù)列{bn}為等比數(shù)列,則有$\root{5}{_{6}_{7}…_{10}}$=$\root{15}{_{1}_{2}…_{15}}$成立”,正確.
故選A.

點(diǎn)評 本題考查類比推理,本題解題的關(guān)鍵是正確理解類比的含義,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.實(shí)數(shù)x,y,z滿足x+y+z=5,xy+yz+zx=3,則z的最大值是$\frac{13}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)函數(shù)f(x)=ex,g(x)=lnx-2.
(Ⅰ)證明:$g(x)≥-\frac{e}{x}$;
(Ⅱ)若對所有的x≥0,都有$f(x)-\frac{1}{f(x)}≥ax$,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知函數(shù)$f(x)={2017^x}+ln(\sqrt{{x^2}+1}+x)-{2017^{-x}}$+1,則不等式f(2x-1)+f(x)>2的解集為($\frac{1}{3}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)實(shí)數(shù)a=log23,b=log${\;}_{\frac{1}{3}}$$\frac{1}{2}$,c=$\frac{1}{{∫}_{0}^{π}xdx}$,則( 。
A.a>b>cB.a>c>bC.b>a>cD.b>c>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.設(shè)數(shù)列{an}的前n項和為Sn,a1=1,an+1=3Sn+1,n∈N*
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)bn=n+an,求Tn=b1+b2+…+bn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.某出版商準(zhǔn)備出版一種教輔讀物,需要先進(jìn)行調(diào)研,計劃對山東、廣東、江蘇三地市場進(jìn)行市場調(diào)研,待調(diào)研結(jié)束后決定印刷的數(shù)量,試畫出流程圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.一個幾何體的三視圖如圖所示,則該幾何體的表面積為( 。
A.$12+\sqrt{3}$B.$10+\sqrt{3}$C.$10+2\sqrt{3}$D.$11+\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若復(fù)數(shù)z滿足i(z+1)=-3+2i,則z的虛部是3.

查看答案和解析>>

同步練習(xí)冊答案