15.設(shè)定點(diǎn)F1(0,2),F(xiàn)2(0,-2),動(dòng)點(diǎn)P滿足條件$|{P{F_1}}|+|{P{F_2}}|=a+\frac{4}{a}(a>0)$,則點(diǎn)P的軌跡是( 。
A.橢圓B.線段C.不存在D.橢圓或線段

分析 定點(diǎn)F1(0,2),F(xiàn)2(0,-2),動(dòng)點(diǎn)P滿足條件$|{P{F_1}}|+|{P{F_2}}|=a+\frac{4}{a}(a>0)$,利用基本不等式的性質(zhì)可得:|PF1|+|PF2|≥4,當(dāng)且僅當(dāng)a=2時(shí)取等號(hào).即可得出軌跡方程.

解答 解:∵定點(diǎn)F1(0,2),F(xiàn)2(0,-2),動(dòng)點(diǎn)P滿足條件$|{P{F_1}}|+|{P{F_2}}|=a+\frac{4}{a}(a>0)$,
∴|PF1|+|PF2|≥2$\sqrt{a×\frac{4}{a}}$=4,當(dāng)且僅當(dāng)a=2時(shí)取等號(hào).
①|(zhì)PF1|+|PF2|>4=|F1F2|,其軌跡為橢圓.
②|PF1|+|PF2|=4=|F1F2|,其軌跡為線段F1F2
則點(diǎn)P的軌跡是橢圓或線段.
故選:D.

點(diǎn)評(píng) 本題考查了橢圓的定義、基本不等式的性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.某幾何體的三視圖如圖所示,若可放入一球于其內(nèi)部且與其各面相切,則該幾何體的表面積為( 。
A.96B.144C.192D.240

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.在某次數(shù)學(xué)趣味活動(dòng)中,每位參加者需從所有的“三位遞增數(shù)”中隨機(jī)抽取1個(gè)數(shù),且只能抽取一次.(若n是一個(gè)三位正整數(shù),且n的個(gè)位數(shù)字大于十位數(shù)字,十位數(shù)字大于百位數(shù)字,則稱n為“三位遞增數(shù)”如137,359,567等)得分規(guī)則如下:若抽取的“三位遞增數(shù)”的三個(gè)數(shù)字之積不能被5整除,參加者得0分;若能被5整除,但不能被10整除,得-1分;若能被10整除,得1分.已知某同學(xué)甲參加活動(dòng),求甲得分X的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.計(jì)算$\frac{2+2i}{i}+\frac{1+i}{1-i}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知函數(shù)$f(x)=\left\{\begin{array}{l}(1-2a)x+5(x≤12)\\{a^{x-13}}(x>12)\end{array}\right.$,若數(shù)列{an}滿足an=f(n),n∈N+,且對(duì)任意的兩個(gè)正整數(shù)m,n(m≠n),都有(m-n)(am-an)<0,則實(shí)數(shù)a的取值范圍是($\frac{1}{2}$,$\frac{2}{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知函數(shù)y=f(x)(x∈R)滿足f(x)=2x+1,在數(shù)列{an},a1=1,an+1=f(an)-1(n∈N*),數(shù)列{bn}為等差數(shù)列,首項(xiàng)b1=1,公差為2.
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)令${c_n}=\frac{b_n}{a_n}$(n∈N*),求{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.設(shè)集合An={1,2,3,…,n}(n∈N*,n≥3),記An中的元素組成的非空子集為$A_i^'$(i∈N*,i=1,2,3,…,2n-1),對(duì)于?i∈{1,2,3,…,2n-1},$A_i^'$中的最小元素和為Sn,則S5=(  )
A.32B.57C.75D.480

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.有6個(gè)零件,其中4個(gè)一等品,2個(gè)二等品,若從這6個(gè)零件中任意取2個(gè),那么至少有1個(gè)一等品的概率是$\frac{14}{15}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知$|{\overrightarrow a}|=|{\overrightarrow b}|=|\overrightarrow a+\overrightarrow b|=2$
(1)求$\overrightarrow a$與$\overrightarrow b$的夾角;
(2)求證:$({\overrightarrow a+2\overrightarrow b})⊥\overrightarrow a$.

查看答案和解析>>

同步練習(xí)冊(cè)答案