16.設集合A={x|-1<x<2},集合B={x|x(x-3)<0},則A∪B=( 。
A.{x|0<x<2}B.{x|-1<x<3}C.{x|-1<x<0}D.{x|2<x<3}

分析 由A與B,求出兩集合的并集即可.

解答 解:集合A={x|-1<x<2},集合B={x|x(x-3)<0}={x|0<x<3},則A∪B={x|-1<x<3},
故選:B.

點評 此題考查了并集及其運算,熟練掌握并集的定義是解本題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

6.某學校在自主招生考試成績中隨機抽取100名學生的筆試成績,按成績分組:第1組[160,165),第2組[165,170),第3組[170,175),第4組[175,180),第5組[180,185],得到的頻率分布直方圖如圖所示:
(1)求第3,4,5組的頻率;
(2)為了能選撥最優(yōu)秀的學生,該校決定在筆試成績高的第組用分層抽樣法抽取6名學生進入第二輪面試,則第3,4,5組每組個抽取多少名學生進入第二輪面試?
(3)第(2)問的前提下,學校決定在這6名學生中隨機抽取2名學生接受考官甲的面試,求:第4組至少有一名學生被考官甲面試的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.如圖,在直三棱柱ABC-A1B1C1中,△ABC是正三角形,E是棱BB1的中點.
(Ⅰ)求證:平面AEC1⊥平面AA1C1C;
(Ⅱ)若AA1=AB=1,求點E到平面ABC1的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.“m≤-$\frac{1}{2}$”是“?x>0,使得$\frac{x}{2}$+$\frac{1}{2x}$-$\frac{3}{2}$>m是真命題”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.雙曲線x2-4y2=4的漸近線方程是(  )
A.y=±4xB.y=±$\frac{1}{4}$xC.y=±2xD.y=±$\frac{1}{2}$x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知f(x)=sinxcosx+$\sqrt{3}$cos2x-$\frac{\sqrt{3}}{2}$,將f(x)的圖象向右平移$\frac{π}{6}$個單位,再向上平移1個單位,得到y(tǒng)=g(x)的圖象.若對任意實數(shù)x,都有g(a-x)=g(a+x)成立,則$g(a+\frac{π}{4})$=( 。
A.$1+\frac{{\sqrt{2}}}{2}$B.1C.$1-\frac{{\sqrt{2}}}{2}$D.0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知集合A={x|2x>1},B={x||x|<3},則A∩B=( 。
A.(-3,0)B.(-3,3)C.(0,3)D.(0,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.在△ABC中,內角A,B,C所對的邊分別為a,b,c,給出下列四個結論
①若A>B>C,則sinA>sinB>sinC
②等式c=acosB+bcosA一定成立
③$\frac{a}{sinA}=\frac{b+c}{sinB+sinC}$
④若($\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|}$+$\frac{\overrightarrow{AC}}{|\overrightarrow{AC}|}$)•$\overrightarrow{BC}$=0,且$\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|}$•$\frac{\overrightarrow{AC}}{|\overrightarrow{AC}|}$=$\frac{1}{2}$,則△ABC為等邊三角形
以上結論正確的個數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知函數(shù)f(x)=$\left\{\begin{array}{l}{m-{3}^{x},x≤0}\\{-{x}^{2},x>0}\end{array}\right.$給出下列兩個命題,p:存在m∈(-∞,0),使得方程f(x)=0有實數(shù)解;q:當m=$\frac{1}{3}$時,f(f(1))=0,則下列命題為真命題的是(  )
A.p∧qB.(¬p)∧qC.p∧(¬q)D.p∨(¬q)

查看答案和解析>>

同步練習冊答案