2.設(shè)集合A={x|-1≤x<2},B={x|log2x>0},則A∪B=( 。
A.(1,2)B.[-1,2)C.[-1,+∞)D.(1,+∞)

分析 求出A,B,由此利用并集的定義能求出A∪B.

解答 解:∵集合A={x|-1≤x<2},B={x|log2x>0}={x|x>1},
∴A∪B={x|x≥-1}=[-1,+∞).
故選:C.

點(diǎn)評(píng) 本題考查并集的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意并集性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.某市在對(duì)學(xué)生的綜合素質(zhì)評(píng)價(jià)中,將其測評(píng)結(jié)果分為“優(yōu)秀、合格、不合格”三個(gè)等級(jí),其中不小于80分為“優(yōu)秀”,小于60分為“不合格”,其它為“合格”.
(1)某校高一年級(jí)有男生500人,女生400人,為了解性別對(duì)該綜合素質(zhì)評(píng)價(jià)結(jié)果的影響,采用分層抽樣的方法從高一學(xué)生中抽取45名學(xué)生的綜合素質(zhì)評(píng)價(jià)結(jié)果,其各個(gè)等級(jí)的頻數(shù)統(tǒng)計(jì)如下表:
等級(jí)優(yōu)秀合格不合格
男生(人)15x5
女生(人)153y
根據(jù)表中統(tǒng)計(jì)的數(shù)據(jù)填寫下面2×2列聯(lián)表,并判斷是否有90%的把握認(rèn)為“綜合素質(zhì)評(píng)價(jià)測評(píng)結(jié)果為優(yōu)秀與性別有關(guān)”?
優(yōu)秀男生女生總計(jì)
非優(yōu)秀
總計(jì)
(2)以(1)中抽取的45名學(xué)生的綜合素質(zhì)評(píng)價(jià)等級(jí)的頻率作為全市各個(gè)評(píng)價(jià)等級(jí)發(fā)生的概率,且每名學(xué)生是否“優(yōu)秀”相互獨(dú)立,現(xiàn)從該市高一學(xué)生中隨機(jī)抽取3人.
①求所選3人中恰有2人綜合素質(zhì)評(píng)價(jià)為“優(yōu)秀”的概率;
②記X表示這3人中綜合素質(zhì)評(píng)價(jià)等級(jí)為“優(yōu)秀”的個(gè)數(shù),求X的數(shù)學(xué)期望.
參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
臨界值表:
P(K2≥k00.150.100.050.0250.010
k02.0722.7063.8415.0246.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=|2x-1|.
(Ⅰ)若不等式f(x+$\frac{1}{2}$)≤2m-1(m>0)的解集為[-2,2],求實(shí)數(shù)m的值;
(Ⅱ)若不等式f(x)≤2y+$\frac{a}{{2}^{y}}$+|2x+3|,對(duì)任意的實(shí)數(shù)x,y∈R恒成立,求實(shí)數(shù)a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若過點(diǎn)P(a,a)與曲線f(x)=xlnx相切的直線有兩條,則實(shí)數(shù)a的取值范圍是(e,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知f(x)=sinωx,(ω>0)的部分圖象如圖所示,且($\overrightarrow{OP}$+$\overrightarrow{OQ}$)•$\overrightarrow{OM}$=2,則ω的值是π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,已知a1=1,an+1=$\frac{n+2}{n}$Sn(n∈N*).
(1)證明:數(shù)列{${\frac{S_n}{n}}\right.$}是等比數(shù)列;
(2)令bn=ln$\frac{a_n}{n}$,求數(shù)列{bn}的前n項(xiàng)和為Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,在平面直角坐標(biāo)系xOy中,已知R(x0,y0)是橢圓$\frac{{y}^{2}}{36}$+$\frac{{x}^{2}}{18}$=1上的一點(diǎn),從原點(diǎn)O向圓R(x-x02+(y-y02=12作兩條切線,分別交橢圓于P,Q兩點(diǎn).
(1)若R點(diǎn)在第一象限,且直線OP,OQ互相垂直,求圓R的方程;
(2)若直線OP,OQ的斜率存在,分別記為k1,k2,求k1•k2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,在四棱錐P-ABCD中,AB⊥平面BCP,CD∥平面ABP,AB=BC=CP=BP=2CD=2.
(Ⅰ)證明:平面BAP⊥平面DAP;
(Ⅱ)點(diǎn)M為線段AB(含端點(diǎn))上一點(diǎn),設(shè)直線MP與平面DCP所成角為α,求sinα的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知單位圓上三個(gè)不同點(diǎn)A,B,C,若|$\overrightarrow{AB}$-$\overrightarrow{AC}$|=2,則向量$\overrightarrow{AB}$與$\overrightarrow{AC}$的夾角為$\frac{π}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案