10.若過點P(a,a)與曲線f(x)=xlnx相切的直線有兩條,則實數(shù)a的取值范圍是(e,+∞).

分析 設(shè)切點為(m,mlnm),求出導(dǎo)數(shù),求得切線的斜率,由兩點的斜率公式可得$\frac{1}{a}$=$\frac{lnm}{m}$,設(shè)g(m)=$\frac{lnm}{m}$,求出導(dǎo)數(shù)和單調(diào)區(qū)間,可得最大值,由題意可得0<$\frac{1}{a}$<$\frac{1}{e}$,解不等式即可得到所求范圍.

解答 解:設(shè)切點為(m,mlnm),f(x)=xlnx的導(dǎo)數(shù)為f′(x)=1+lnx,
可得切線的斜率為1+lnm,
由切線經(jīng)過點P(a,a),可得1+lnm=$\frac{mlnm-a}{m-a}$,
化簡可得$\frac{1}{a}$=$\frac{lnm}{m}$,(*),
由題意可得方程(*)有兩解,
設(shè)g(m)=$\frac{lnm}{m}$,可得g′(m)=$\frac{1-lnm}{{m}^{2}}$,
當m>e時,g′(m)<0,g(m)遞增;
當0<m<e時,g′(m)>0,g(m)遞減.
可得g(m)在m=e處取得極大值,且為最大值$\frac{1}{e}$,
即有0<$\frac{1}{a}$<$\frac{1}{e}$,解得a>e.
故答案為:(e,+∞).

點評 本題考查導(dǎo)數(shù)的運用:求切線的斜率和單調(diào)區(qū)間、極值和最值,考查函數(shù)方程的轉(zhuǎn)化思想,以及運算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知在數(shù)列{an}中,an=2n2-3n+5,則數(shù)列{an}是( 。
A.遞增數(shù)列B.遞減數(shù)列C.常數(shù)列D.擺動數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知如圖所示的三棱錐D-ABC的四個頂點均在球O的球面上,△ABC和△DBC所在的平面互相垂直,AB=3,AC=$\sqrt{3}$,BC=CD=BD=2$\sqrt{3}$,則球O的體積為( 。
A.$\frac{4π}{3}$B.$\frac{{4\sqrt{3}π}}{3}$C.$\frac{32π}{3}$D.36π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.觀察下列等式;
12=1,
32=2+3+4,
52=3+4+5+6+7,
72=4+5+6+7+8+9+10,

由此可歸納出一般性的等式:
當n∈N*時,(2n-1)2=n+(n+1)+(n+2)+…+(3n-2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.在區(qū)間[-1,1]內(nèi)隨機取兩個實數(shù)x,y,則滿足y≥x2-1的概率是$\frac{5}{6}$ .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知拋物線y2=4x,點A(1,0)B(-1,0),點M在拋物線上,則∠MBA的最大值是( 。
A.$\frac{π}{4}$B.$\frac{π}{3}$C.$\frac{π}{6}$D.$\frac{3π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)集合A={x|-1≤x<2},B={x|log2x>0},則A∪B=( 。
A.(1,2)B.[-1,2)C.[-1,+∞)D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知雙曲線$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的左頂點與拋物線  y2=2px(p>0)的焦點的距離為4,且雙曲線的一條漸近線與拋物線的準線的交點坐標為(-1,-1),則雙曲線的方程為( 。
A.$\frac{x^2}{16}$-$\frac{y^2}{4}$=1B.$\frac{x^2}{4}$-y2=1C.$\frac{x^2}{9}$-$\frac{y^2}{9}$=1D.$\frac{x^2}{3}$-$\frac{y^2}{3}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知F1,F(xiàn)2分別是橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的兩個焦點,P(1,$\frac{{\sqrt{2}}}{2}$)是橢圓上一點,且$\sqrt{2}$|PF1|,|F1F2|,$\sqrt{2}$|PF2|成等差數(shù)列.
(1)求橢圓C的標準方程;
(2)已知動直線l過點F2,且與橢圓C交于A、B兩點,試問x軸上是否存在定點Q,使得$\overrightarrow{QA}$•$\overrightarrow{QB}$=-$\frac{7}{16}$恒成立?若存在,求出點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案