7.已知向量$\overrightarrow{m}$=(-1,1),$\overrightarrow{n}$=(t,2),若$\overrightarrow{m}$⊥$\overrightarrow{n}$,則|$\overrightarrow{m}$+$\overrightarrow{n}$|=(  )
A.2$\sqrt{2}$B.$\sqrt{5}$C.2$\sqrt{3}$D.$\sqrt{10}$

分析 根據(jù)向量的垂直關(guān)系求出t的值,求出$\overrightarrow{m}$+$\overrightarrow{n}$的坐標(biāo),從而求出$\overrightarrow{m}$+$\overrightarrow{n}$的模即可.

解答 解:$\overrightarrow{m}$=(-1,1),$\overrightarrow{n}$=(t,2),
若$\overrightarrow{m}$⊥$\overrightarrow{n}$,則2-t=0,解得:t=2,
故:$\overrightarrow{m}$=(-1,1),$\overrightarrow{n}$=(2,2),
$\overrightarrow{m}$+$\overrightarrow{n}$=(1,3),
故|$\overrightarrow{m}$+$\overrightarrow{n}$|=$\sqrt{1+9}$=$\sqrt{10}$,
故選:D.

點(diǎn)評(píng) 本題考查向量垂直的條件:數(shù)量積為0,考查向量求模問(wèn)題,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知函數(shù)$f(x)=\left\{\begin{array}{l}2a-x,x≤0\\{log_a}x,x>0\end{array}\right.$(a>0且a≠1),若f(f(1))=1,則a=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知函數(shù)f(x)=sin2xcos$\frac{3π}{5}-cos2xsin\frac{3π}{5}$.
(Ⅰ)求f(x)的最小正周期和對(duì)稱軸的方程;
(Ⅱ)求f(x)在區(qū)間$[0,\frac{π}{2}]$上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.若實(shí)數(shù)x,y滿足約束條件$\left\{\begin{array}{l}x≥0\;\\ y≤x\;\\ x+y+a≤0\;\end{array}\right.$且z=x+3y的最大值為4,則實(shí)數(shù)a的值為-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知函數(shù)f(x)為偶函數(shù),當(dāng)x≤0時(shí),f(x)為增函數(shù),則“$\frac{6}{5}$<x<2”是“f[log2(2x-2)]>f(log${\;}_{\frac{1}{2}}$$\frac{2}{3}$)”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知函數(shù)f(x)的導(dǎo)函數(shù)f′(x),滿足(x-1)[xf′(x)-f(x)]>0,則下列關(guān)于f(x)的命題正確的是( 。
A.f(3)<f(-3)B.f(2)>f(-2)C.f(3)<f(2)D.2f(3)>3f(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知點(diǎn)F2,P分別為雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的右焦點(diǎn)與右支上的一點(diǎn),O為坐標(biāo)原點(diǎn),若2$\overrightarrow{OM}=\overrightarrow{OP}+\overrightarrow{O{F_2}},|{\overrightarrow{O{F_2}}}|=|{\overrightarrow{{F_2}M}}$|,且$\overrightarrow{O{F_2}}•\overrightarrow{{F_2}M}=\frac{c^2}{2}$,則該雙曲線的離心率為( 。
A.$2\sqrt{3}$B.$\frac{3}{2}$C.$\sqrt{3}$D.$\frac{{\sqrt{3}+1}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.如圖,四棱錐P-ABCD中,PA⊥底面ABCD,底面ABCD是直角梯形,∠ADC=90°,AD∥BC,AB⊥AC,AB=AC=$\sqrt{2}$,點(diǎn)E在AD上,且AE=2ED.
(Ⅰ)已知點(diǎn)F在BC上,且CF=2FB,求證:平面PEF⊥平面PAC;
(Ⅱ)若△PBC的面積是梯形ABCD面積的$\frac{4}{3}$,求點(diǎn)E到平面PBC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知函數(shù)$f(x)=sin(ωx+\frac{π}{6})(ω>0)$的最小正周期為4π,則( 。
A.函數(shù)f(x)的圖象關(guān)于原點(diǎn)對(duì)稱
B.函數(shù)f(x)的圖象關(guān)于直線$x=\frac{π}{3}$對(duì)稱
C.函數(shù)f(x)圖象上的所有點(diǎn)向右平移$\frac{π}{3}$個(gè)單位長(zhǎng)度后,所得的圖象關(guān)于原點(diǎn)對(duì)稱
D.函數(shù)f(x)在區(qū)間(0,π)上單調(diào)遞增

查看答案和解析>>

同步練習(xí)冊(cè)答案