已知直線l過點(diǎn)A(2,1)和B(1,m2)(m∈R),則直線l斜率的取值范圍是
 
,傾斜角的取值范圍是
 
考點(diǎn):斜率的計(jì)算公式
專題:直線與圓
分析:由兩點(diǎn)坐標(biāo)求出直線l的斜率,然后由直線傾斜角的正切值等于斜率,結(jié)合傾斜角的范圍求解.
解答: 解:∵A(2,1),B(1,m2)(m∈R),
kAB=
m2-1
1-2
=1-m2
,
∴kAB≤1.
∴直線l的傾斜角的范圍為(-∞,1].
設(shè)直線l的傾斜角為α(0°≤α<180°),
則tanα≤1,∴α∈[0°,45°]∪(90°,180°).
故答案為:(-∞,1],[0°,45°]∪(90°,180°).
點(diǎn)評:本題考查兩點(diǎn)求斜率的公式,考查了直線的傾斜角和斜率的關(guān)系,是基礎(chǔ)的計(jì)算題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x||2x+1|>3},集合B={x|y=
x+1
x-2
}
,則A∩(∁RB)=( 。
A、(1,2)
B、(1,2]
C、(1,+∞)
D、[1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

靖國神社是日本軍國主義的象征.中國人民珍愛和平,所以要堅(jiān)決反對日本軍國主義.2013年12月26日日本首相安倍晉三悍然參拜靖國神社,此舉在世界各國激起輿論的批評.某報(bào)的環(huán)球輿情調(diào)查中心對中國大陸七個(gè)代表性城市的550個(gè)普通民眾展開民意調(diào)查.某城市調(diào)查體統(tǒng)計(jì)結(jié)果如下表:
                    性別
中國政府是否
需要在釣魚島和其他爭議
問題上持續(xù)對日強(qiáng)硬
需要 50 250
不需要 100 150
(Ⅰ)試估計(jì)這七個(gè)代表性城市的普通民眾中,認(rèn)為“中國政府需要在釣魚島和其他爭議問題上持續(xù)對日強(qiáng)硬”的民眾所占比例;
(Ⅱ)能否有99.9%以上的把握認(rèn)為這七個(gè)代表性城市的普通民眾的民意與性別有關(guān)?
(Ⅲ)從被調(diào)查認(rèn)為“中國政府需要在釣魚島和其他爭議問題上持續(xù)對日強(qiáng)硬”的民眾中,采用分層抽樣的方式抽取6人做進(jìn)一步的問卷調(diào)查,然后在這6人中用簡單隨機(jī)抽樣方法抽取2人進(jìn)行電視專訪,記被抽到的2人中女性的人數(shù)為X,求X的分布列.
P(K2≥k) 0.050 0.010 0.001
k 3.841 6.635 10.828
附:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是二次函數(shù),且滿足f(0)=1,f(x+1)-f(x)=2x,則f(x)的解析式是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若復(fù)數(shù)z1=a+i,z2=1-i(i為虛數(shù)單位),且z1•z2為純虛數(shù),則實(shí)數(shù)a的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)A、B、C、D是空間四個(gè)不同的點(diǎn),在下列命題中,不正確的是
 
(填序號).
①若AC與BD共面,則AD與BC共面;
②若AC與BD是異面直線,則AD與BC是異面直線;
③AB=AC,DB=DC,則AD=BC;
④AB=AC,DB=DC,則AD⊥BC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y2=4x的準(zhǔn)線與雙曲線
x2
a2
-
y2
b2
=1
的兩條漸近線分別交于A,B兩點(diǎn),且|AB|=2
3
,則雙曲線的離心率e為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在正三棱錐P-ABC中,側(cè)棱與底面邊長相等,D,E,F(xiàn)分別是AB,BC,CA的中點(diǎn),有下列四個(gè)結(jié)論:
①BC∥平面PDF;
②DF⊥平面PAE;
③平面PDF⊥平面ABC;
④平面PAE⊥平面ABC,
其中正確的結(jié)論有
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法中,正確的是(  )
A、命題“存在x∈R,x2-x>0”的否定是“對任意x∈R,x2-x<0”.
B、設(shè)α,β為兩個(gè)不同的平面,直線l?α,則“l(fā)⊥β”是“α⊥β”成立的必要不充分條件.
C、命題“若a<b,則am2<bm2”的否命題是真命題.
D、已知x∈R,則“x>1”是“x>2”的充分不必要條件.

查看答案和解析>>

同步練習(xí)冊答案