【題目】某中學(xué)團委組織了“弘揚奧運精神,愛我中華”的知識競賽,從參加考試的學(xué)生中抽出60名學(xué)生,將其成績(均為整數(shù))分成六段[40,50),[50,60),…,[90,100]后畫出如下部分頻率分布直方圖.觀察圖形給出的信息,回答下列問題:

(1)求第四小組的頻率,并補全這個頻率分布直方圖;

(2)估計這次考試的及格率(60分及以上為及格)和平均分;

(3)從成績是[40,50)和[90,100]的學(xué)生中選兩人,求他們在同一分數(shù)段的概率.

【答案】(1)0.3,直方圖見解析;(2)及格率75%,平均分為71;(3)。

【解析】

試題分析:(1)頻率分布直方圖中各組的頻率之和為1,據(jù)此來求第四組的頻率;(2)求解平均分時各組的分數(shù)以該組中間值為代表進行計算;(3)找到任選兩人的選法種數(shù)與兩人位于同一組的選法種數(shù),求其比值即可

試題解析:(1)因為各組的頻率和等于1,故第四組的頻率:f41-(00250015×20010005×10032

其頻率分布直方圖如圖所示.

4

2)依題意,60分及以上的分數(shù)所在的第三、四、五、六組,頻率和為(0015003000250005×10075

所以,估計這次考試的合格率是75%7

利用組中值估算這次考試的平均分,可得:

45·f155·f265·f375·f485·f595·f6

45×0155×01565×01575×0385×02595×00571

所以估計這次考試的平均分是71分. 10

3[40,50)與[90100]的人數(shù)分別是63,所以從成績是[4050)與[90,100]的學(xué)生中選兩人,將[40,50]分數(shù)段的6人編號為A1,A2, A6,將[90,100]分數(shù)段的3人編號為B1B2,B3,從中任取兩人,則基本事件構(gòu)成集合Ω{A1A2),(A1,A3)(A1,A6),(A1,B1),(A1B2),(A1,B3),(A2,A3),(A2A4), ,(B2,B3}共有36個,其中,在同一分數(shù)段內(nèi)的事件所含基本事件為(A1,A2),(A1,A3)(A1,A6),(A2,A3)(A5,A6),(B1,B2),(B1,B3),(B2B3)共18個,故概率P14

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A、B、C的對邊分別為a,b,c.角A,B,C成等差數(shù)列.
(1)求cosB的值;
(2)邊a,b,c成等比數(shù)列,求sinAsinC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)在(0, )上處處可導(dǎo),若[f(x)﹣f′(x)]tanx﹣f(x)<0,則( )
A.一定小于
B.一定大于
C.可能大于
D.可能等于

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C與橢圓E: 共焦點,并且經(jīng)過點 ,
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)在橢圓C上任取兩點P、Q,設(shè)PQ所在直線與x軸交于點M(m,0),點P1為點P關(guān)于軸x的對稱點,QP1所在直線與x軸交于點N(n,0),探求mn是否為定值?若是,求出該定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的鍍鋅鐵皮材料ABCD,上沿DC為圓弧,其圓心為A,圓半徑為2米,AD⊥AB,BC⊥AB,且BC=1米。現(xiàn)要用這塊材料裁一個矩形PEAF(其中P在圓弧DC上、E在線段AB上,F(xiàn)在線段AD上)做圓柱的側(cè)面,若以PE為母線,問如何裁剪可使圓柱的體積最大?其最大值是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點P是橢圓E:+y2=1上的任意一點,F1,F2是它的兩個焦點,O為坐標(biāo)原點,動點Q滿足.

(1)求動點Q的軌跡方程;

(2)若已知點A(0,-2),過點A作直線l與橢圓E相交于B,C兩點,△OBC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知橢圓C:的離心率,F(xiàn)1,F(xiàn)2分別為左、右焦點,過F1的直線交橢圓CP,Q兩點,且的周長為8.

(1)求橢圓c的方程;

(2)設(shè)過點M(3,0)的直線交橢圓C于不同兩點A,B,N為橢圓上一點,且滿足(O為坐標(biāo)原點),當(dāng)時,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正四棱臺ABCDA1B1C1D1中,上底面A1B1C1D1邊長為1,下底面ABCD邊長為2,側(cè)棱與底面所成的角為60°,則異面直線AD1B1C所成角的余弦值為__________

查看答案和解析>>

同步練習(xí)冊答案