8.已知$\overrightarrow{a}$、$\overrightarrow$為單位向量,則$|{\overrightarrow a+\overrightarrow b}|+|{\overrightarrow a-\overrightarrow b}|$的最大值為( 。
A.$2\sqrt{3}$B.$\sqrt{3}+1$C.3D.$2\sqrt{2}$

分析 根據(jù)單位向量的定義與性質(zhì),利用模長(zhǎng)公式,求出$\overrightarrow{a}$⊥$\overrightarrow$時(shí)|$\overrightarrow{a}$+$\overrightarrow$|+|$\overrightarrow{a}$-$\overrightarrow$|取得最大值.

解答 解:$\overrightarrow{a}$、$\overrightarrow$為單位向量,則|$\overrightarrow{a}$|=|$\overrightarrow$|=1,不妨設(shè)$\overrightarrow{a}$=(cosθ,sinθ)$\overrightarrow$=(1,0);
∴|$\overrightarrow{a}$+$\overrightarrow$|=$\sqrt{{(cosθ+1)}^{2}{+sin}^{2}θ}$=$\sqrt{2+2cosθ}$=2|cos$\frac{θ}{2}$|,
|$\overrightarrow{a}$-$\overrightarrow$|=$\sqrt{{(cosθ-1)}^{2}{+sin}^{2}θ}$=$\sqrt{2-2cosθ}$=2|sin$\frac{θ}{2}$|,
∴|$\overrightarrow{a}$+$\overrightarrow$|+|$\overrightarrow{a}$-$\overrightarrow$|=2(|cos$\frac{θ}{2}$|+|sin$\frac{θ}{2}$|);
當(dāng)cos$\frac{θ}{2}$≥0,sin$\frac{θ}{2}$≥0時(shí),
|cos$\frac{θ}{2}$|+|sin$\frac{θ}{2}$|=cos$\frac{θ}{2}$+sin$\frac{θ}{2}$=$\sqrt{2}$sin($\frac{θ}{2}$+$\frac{π}{4}$)≤$\sqrt{2}$;
當(dāng)cos$\frac{θ}{2}$≤0,sin$\frac{θ}{2}$≥0時(shí),
|cos$\frac{θ}{2}$|+|sin$\frac{θ}{2}$|=-cos$\frac{θ}{2}$+sin$\frac{θ}{2}$=$\sqrt{2}$sin($\frac{θ}{2}$-$\frac{π}{4}$)≤$\sqrt{2}$;
當(dāng)cos$\frac{θ}{2}$≥0,sin$\frac{θ}{2}$≤0時(shí),
|cos$\frac{θ}{2}$|+|sin$\frac{θ}{2}$|=cos$\frac{θ}{2}$-sin$\frac{θ}{2}$=$\sqrt{2}$coss($\frac{θ}{2}$+$\frac{π}{4}$)≤$\sqrt{2}$;
當(dāng)cos$\frac{θ}{2}$≤0,sin$\frac{θ}{2}$≤0時(shí),
|cos$\frac{θ}{2}$|+|sin$\frac{θ}{2}$|=-cos$\frac{θ}{2}$-sin$\frac{θ}{2}$=-$\sqrt{2}$sin($\frac{θ}{2}$+$\frac{π}{4}$)≤$\sqrt{2}$;
∴|$\overrightarrow{a}$+$\overrightarrow$|+|$\overrightarrow{a}$-$\overrightarrow$|≤2$\sqrt{2}$.
故選:D.

點(diǎn)評(píng) 本題考查了平面向量的數(shù)量積與模長(zhǎng)公式的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.南北朝時(shí)期的數(shù)學(xué)家祖沖之,利用“割圓術(shù)”得出圓周率π的值在3.1415926與3.1415927之間,成為世界上第一把圓周率的值精確到7位小數(shù)的人,他的這項(xiàng)偉大成就比外國數(shù)學(xué)家得出這樣精確數(shù)值的時(shí)間,至少要早一千年,創(chuàng)造了當(dāng)時(shí)世界上的最高水平.我們用概率模型方法估算圓周率,向正方形及其內(nèi)切圓隨機(jī)投擲豆子,在正方形中的80顆豆子中,落在圓內(nèi)的有64顆,則估算圓周率的值為( 。
A.3.1B.3.14C.3.15D.3.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若復(fù)數(shù)z滿足(3+4i)z=25,則復(fù)平面內(nèi)表示z的點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知x,y滿足$\left\{\begin{array}{l}y≥x\\ x+y≤4\\ x≥1\end{array}\right.$則$\frac{{{y^2}-4xy+3{x^2}}}{x^2}$的取值范圍為[-1,0].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知集合A={x|x2-2x<0},$B=\left\{{x\left|{-\sqrt{3}<x<\sqrt{3}}\right.}\right\}$,則A∩B=( 。
A.$\left\{{x\left|{-\sqrt{3}<x<0}\right.}\right\}$B.$\left\{{x\left|{-\sqrt{3}<x<2}\right.}\right\}$C.$\left\{{x\left|{0<x<\sqrt{3}}\right.}\right\}$D.{x|-2<x<0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,a2-ab-2b2=0.
(1)若$B=\frac{π}{6}$,求C;
(2)若$C=\frac{2π}{3}$,c=14,求S△ABC

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.點(diǎn)A(2,1)到拋物線y2=ax準(zhǔn)線的距離為1,則a的值為( 。
A.$-\frac{1}{4}$或$-\frac{1}{12}$B.$\frac{1}{4}$或$\frac{1}{12}$C.-4或-12D.4或12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若復(fù)數(shù)(1+2i)(1+ai)是純虛數(shù)(i為虛數(shù)單位),則實(shí)數(shù)a的值是(  )
A.-2B.$\frac{1}{2}$C.-$\frac{1}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知直線l1過直線l2:x+2y=0與l3:2x+2y-1=0的交點(diǎn),與圓x2+y2+2y=0相切,則直線l1的方程是( 。
A.3x+4y-1=0B.3x+4y+9=0或x=1C.3x+4y+9=0D.3x+4y-1=0或x=1

查看答案和解析>>

同步練習(xí)冊(cè)答案