1.已知θ為銳角,且sinθ=$\frac{3}{5}$,則sin(θ+45°)=( 。
A.$\frac{7\sqrt{2}}{10}$B.-$\frac{7\sqrt{2}}{10}$C.$\frac{\sqrt{2}}{10}$D.-$\frac{\sqrt{2}}{10}$

分析 由已知利用同角三角函數(shù)基本關(guān)系式可求cosθ,進(jìn)而利用兩角和的正弦函數(shù)公式,特殊角的三角函數(shù)值即可計(jì)算得解.

解答 解:∵θ為銳角,且sinθ=$\frac{3}{5}$,
∴cosθ=$\sqrt{1-si{n}^{2}θ}$=$\frac{4}{5}$,
∴sin(θ+45°)=$\frac{\sqrt{2}}{2}$(sinθ+cosθ)=$\frac{\sqrt{2}}{2}$×($\frac{3}{5}+\frac{4}{5}$)=$\frac{7\sqrt{2}}{10}$.
故選:A.

點(diǎn)評(píng) 本題主要考查了同角三角函數(shù)基本關(guān)系式,兩角和的正弦函數(shù)公式,特殊角的三角函數(shù)值在三角函數(shù)化簡(jiǎn)求值中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.直線l1:2x+(m+1)y+4=0和直線l2:mx+3y-2=0平行,則m=( 。
A.-3或2B.2C.-2或3D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=$\frac{-{2}^{x}+1}{{2}^{x+1}+2}$.
(1)判斷函數(shù)f(x)的奇偶性,并證明;
(2)若不等式f(x)>log9(2c-1)有解,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,在四棱錐P-ABCD中,平面PAD⊥平面ABCD,E為AD的中點(diǎn),PA⊥AD,BE∥CD,BE⊥AD,PA=AE=BE=2,CD=1.
(Ⅰ)求證:平面PAD⊥平面PCD;
(Ⅱ)求二面角C-PB-E的余弦值;
(Ⅲ)在線段PE上是否存在點(diǎn)M,使得DM∥平面PBC?若存在,求出點(diǎn)M的位置;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知數(shù)列1,a,5是等差數(shù)列,則實(shí)數(shù)a的值為( 。
A.2B.3C.4D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若實(shí)數(shù)a,b,c滿足1<b<a<2,0<c<$\frac{1}{8}$,則關(guān)于x的方程ax2+bx+c=0( 。
A.在區(qū)間(-1,0)內(nèi)沒有實(shí)數(shù)根
B.在區(qū)間(-1,0)內(nèi)有一個(gè)實(shí)數(shù)根,在(-1,0)外有一個(gè)實(shí)數(shù)根
C.在區(qū)間(-1,0)內(nèi)有兩個(gè)相等的實(shí)數(shù)根
D.在區(qū)間(-1,0)內(nèi)有兩個(gè)不相等的實(shí)數(shù)根

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知拋物線C;y2=2px過點(diǎn)A(1,1).
(1)求拋物線C的方程;
(2)過點(diǎn)P(3,-1)的直線與拋物線C交于M,N兩個(gè)不同的點(diǎn)(均與點(diǎn)A不重合),設(shè)直線AM,AN的斜率分別為k1,k2,求證:k1•k2為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015-2016學(xué)年陜西省高一下學(xué)期期末考數(shù)學(xué)試卷(解析版) 題型:選擇題

已知向量a=(3,0),向量b=(-5,5),則向量a與向量b的夾角為

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.設(shè)A={x|2≤x≤6},B={x|2a≤x≤a+3},若A∪B=A,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案