已知橢圓的中心為坐標(biāo)原點(diǎn)O,焦點(diǎn)在x軸上,過(guò)橢圓右焦點(diǎn)F2且斜率為1的直線交橢圓于A、B兩點(diǎn),弦AB的中點(diǎn)為T,OT的斜率為,
(1)求橢圓的離心率;
(2)設(shè)Q是橢圓上任意一點(diǎn),F(xiàn)1為左焦點(diǎn),求的取值范圍;
(3)若M、N是橢圓上關(guān)于原點(diǎn)對(duì)稱的兩個(gè)點(diǎn),點(diǎn)P是橢圓上任意一點(diǎn),當(dāng)直線PN斜率,試求直線PM的斜率的范圍。
(1)(2) (3)
(1)根據(jù)題意設(shè)橢圓方程為
點(diǎn)A為       B點(diǎn)為       T點(diǎn)為





     即
 


(3)設(shè),則
   




     
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在橢圓+=1上求一點(diǎn)P,使它到定點(diǎn)Q(0,1)的距離最大,則P的坐標(biāo)是___________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

△ABC的兩個(gè)頂點(diǎn)A、B的坐標(biāo)分別是(-5,0)、(5,0),邊AC、BC所在直線的斜率
之積為-,求頂點(diǎn)C的軌跡.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知點(diǎn)(3,2)在橢圓+=1上,則(    )
A.點(diǎn)(-3,-2)不在橢圓上
B.點(diǎn)(3,-2)不在橢圓上
C.點(diǎn)(-3,2)在橢圓上
D.無(wú)法判斷點(diǎn)(-3,-2)、(3,-2)、(-3,2)是否在橢圓上

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

橢圓C1:+=1和橢圓C2:+=1有(   )
A.相等的長(zhǎng)軸B.相等的焦距
C.相等的離心率D.相同的準(zhǔn)線

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知中心在原點(diǎn)、焦點(diǎn)在x軸的橢圓的離心率為,且過(guò)點(diǎn)().
(Ⅰ)求橢圓E的方程;
(Ⅱ)若A,B是橢圓E的左、右頂點(diǎn),直線)與橢圓E交于、兩點(diǎn),證明直線與直線的交點(diǎn)在垂直于軸的定直線上,并求出該直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題








(1)求橢圓的離心率;
(2)若左焦點(diǎn)設(shè)過(guò)點(diǎn)且不與坐標(biāo)軸垂直的直線交橢圓于兩點(diǎn),線段的垂直平分線與x軸交于,求點(diǎn)橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

.(本小題滿分14分)已知直線與橢圓相交于兩點(diǎn),且(其中為坐標(biāo)原點(diǎn)).(1)若橢圓的離心率為,求橢圓的標(biāo)準(zhǔn)方程;
(2)求證:不論如何變化,橢圓恒過(guò)定點(diǎn)
(3)若直線過(guò)(2)中的定點(diǎn),且橢圓的離心率,求原點(diǎn)到直線距離的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)橢圓的中心為坐標(biāo)原點(diǎn),它在x軸上的一個(gè)焦點(diǎn)與短軸兩端點(diǎn)連成60°的角,兩準(zhǔn)線間的距離等于8,求橢圓方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案