15.已知sin($\frac{π}{2}$+α)=$\frac{1}{4}$,則cos2α=(  )
A.$-\frac{7}{8}$B.$\frac{7}{8}$C.$\frac{7}{8}$或$-\frac{7}{8}$D.$\frac{{\sqrt{15}}}{4}$

分析 由已知利用誘導公式可求cosα,利用二倍角的余弦函數(shù)公式可求cos2α的值,從而得解.

解答 解:∵sin($\frac{π}{2}$+α)=$\frac{1}{4}$,
∴cosα=$\frac{1}{4}$,
∴cos2α=2cos2α-1=2×($\frac{1}{4}$)2-1=-$\frac{7}{8}$.
故選:A.

點評 本題主要考查了誘導公式,二倍角的余弦函數(shù)公式在三角函數(shù)化簡求值中的應用,考查了轉化思想,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

5.如圖,已知在多面體ABCDEF中,ABCD為正方形,EF∥平面ABCD,M為FC的中點,AB=2,EF到平面ABCD的距離為2,F(xiàn)C=2.
(1)證明:AF∥平面MBD;
(2)若EF=1,求VF-MBE

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.如圖,橢圓長軸端點為A,B,O為橢圓中心,F(xiàn)為橢圓的右焦點,且$\overrightarrow{AF}•\overrightarrow{FB}$=1,|OF|=1.
(1)求橢圓的標準方程;
(2)記橢圓的上頂點為M,直線l交橢圓于P,Q兩點,是否存在直線l,使點F恰為△PQM的垂心?若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知函數(shù)f(x)=$\left\{\begin{array}{l}{\frac{3-4x}{2x-1},x∈[0,\frac{1}{4}]}\\{\frac{1}{2}lo{g}_{2}x-3,x∈(\frac{1}{4},1]}\end{array}\right.$,g(x)=x3-3ax2-2a(a≥1),若對于任意x1∈[0,1]總存在x2∈[0,1],使得g(x2)=f(x1)成立,則a的取值范圍是( 。
A.(1,$\frac{3}{2}$)B.(1,$\frac{3}{2}$]C.[1,$\frac{3}{2}$)D.[1,$\frac{3}{2}$]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知函數(shù)f(x)=x3-3ax+b(a,b∈R)在x=2處的切線方程為y=9x-14.
(Ⅰ)求a,b的值;
(Ⅱ)已知函數(shù)g(x)=-ex+k2+4k,若對任意的x1∈[0,2],總存在x2∈[0,2],使得f(x1)<g(x2)成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.如圖1,在直角梯形ABCD中,AB∥CD,AB⊥AD,且AE=1,AB=2,CD=3,E,F(xiàn)分別為AB,CD上的點,以EF為軸將正方形ADFE向上翻折,使平面ADFE與平面BEFC垂直如圖2.
(1)求證:平面BDF⊥平面BCD;
(2)求多面體AEBDFC的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.函數(shù)f(x)=log2(x2+2x-3)的單調遞減區(qū)間是(-∞,-3).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.f(x),g(x)是定義在[a,b]上的連續(xù)函數(shù),則“f(x)的最大值小于g(x)的最小值”是“f(x)<g(x)對一切x∈[a,b]成立”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.非充分非必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.定義在R上的可導函數(shù)f(x)滿足(x-314)f(2x)-2xf′(2x)>0恒成立,求證:?x∈R,f(x)<0.

查看答案和解析>>

同步練習冊答案