分析 (Ⅰ)求導(dǎo)函數(shù),利用f(x)在x=2處的切線方程為y=9x-14,建立方程,求a,b的值;
(Ⅱ)求出函數(shù)的解析式,利用導(dǎo)數(shù)的正負(fù)可得函數(shù)的單調(diào)區(qū)間;對(duì)任意x1∈[0,2],均存在x2∈[0,2]l,使得f(x1)<g(x2)成立,有f(x)max<g(x)max,求出相應(yīng)函數(shù)的最值,即可求得實(shí)數(shù)k的取值范圍.
解答 解:(Ⅰ)求導(dǎo)函數(shù)可得f′(x)=3x2-3a,
∵f(x)在x=2處的切線方程為y=9x-14,
∴$\left\{\begin{array}{l}{f(2)=8-6a+b=4}\\{f′(2)=12-3a=9}\end{array}\right.$,∴a=1,b=2,
(Ⅱ)由(Ⅰ)知,f(x)=x3-3x+2
∴f′(x)=3(x+1)(x-1),
由f′(x)>0,得x<-1或x>1;由f′(x)<0,得-1<x<1.
故函數(shù)f(x)單調(diào)遞減區(qū)間是(-1,1);單調(diào)遞增區(qū)間是(-∞,-1),(1,+∞).
∴函數(shù)f(x)在(0,1)單調(diào)遞減,在(1,2)上單調(diào)遞增,
又f(0)=2,f(2)=4,有f(0)<f(2),
∴函數(shù)f(x)在區(qū)間[0,2]上的最大值f(x)max=f(2)=4.
又g(x)=-ex+k2+4k
∴g′(x)=-ex,
∴函數(shù)g(x)在[0,2]上單調(diào)遞減,最大值為g(x)max=g(0)=k2+4k-1
因?yàn)閷?duì)任意x1∈[0,2],均存在x2∈[0,2]l,使得f(x1)<g(x2)成立,
所以有f(x)max<g(x)max,則4<k2+4k-1,
∴k>1或k<-5.
故實(shí)數(shù)k的取值范圍是(-∞,-5)∪(1,+∞).
點(diǎn)評(píng) 本題考查導(dǎo)數(shù)知識(shí)的運(yùn)用,考查導(dǎo)數(shù)的幾何意義,考查函數(shù)的單調(diào)性,考查函數(shù)的最值,解題的關(guān)鍵是將問(wèn)題轉(zhuǎn)化為f(x)max<g(x)max,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $-\frac{7}{8}$ | B. | $\frac{7}{8}$ | C. | $\frac{7}{8}$或$-\frac{7}{8}$ | D. | $\frac{{\sqrt{15}}}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $[\frac{3}{4},2]$ | B. | $(-∞,\frac{3}{4}]∪[2,+∞)$ | C. | (-∞,1]∪[2,+∞) | D. | [1,2] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com