已知數(shù)列{an}的前n項和為Sn,Sn=2an-2.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)bn=an•log2an+1,求數(shù)列{bn}的前n項和Tn
考點:數(shù)列的求和,等比關(guān)系的確定
專題:等差數(shù)列與等比數(shù)列
分析:(I)利用“n=1,a1=S1;n≥2,an=Sn-Sn-1”可得an與an-1的關(guān)系,利用等比數(shù)列的通項公式即可得出;
(II)利用“錯位相減法”即可得出.
解答: 解:(Ⅰ)當n=1時,a1=2,
當n≥2時,an=Sn-Sn-1=2an-2-(2an-1-2)
即:
an
an-1
=2
,∴數(shù)列{an}為以2為公比的等比數(shù)列,
an=2n
(Ⅱ)∵bn=2n•log22n+1=(n+1)•2n,
Tn=2×2+3×22+…+n•2n-1+(n+1)•2n
2Tn=2×22+3×23+…+n•2n+(n+1)•2n+1

兩式相減,得-Tn=4+22+23+…+2n-(n+1)2n+1=-n•2n+1,
Tn=n•2n+1
點評:本題考查了利用“n=1,a1=S1;n≥2,an=Sn-Sn-1”求an、“錯位相減法”、等比數(shù)列的通項公式及其前n項和公式等基礎(chǔ)知識與基本技能方法,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如果函數(shù)f(x)=x2+2(a-1)x+2在區(qū)間[2,+∞)上單調(diào)遞增,那么實數(shù)a的取值范圍是( 。
A、a≥-1B、a≤-1
C、a≥3D、a≤3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某科研所為進一步改良某種植物品種,對該植物的兩個品種(分別稱為品種A和品種B)進行試驗,選取兩大片水塘,每大片水塘分成n小片水塘,在總共2n小片水塘中,隨機選n小片水塘種植品種A,另外n小片水塘種植品種B.
(1)若n=2,求植物的品種A恰好在同一大片水塘種植的概率;
(2)若n=4,在第一大片水塘中,種植品種A的小片水塘的數(shù)目記為ξ,求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知幾何體的三視圖如圖所示,可得這個幾何體的體積是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知全集U=R,集合A={x|lgx≤0},B={x|2x
2
}
,則A∪B=(  )
A、(-∞,1]B、(-∞,1)
C、(1,+∞)D、∅

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實數(shù)x,y滿足約束條件
x+y-1≤0
x-y+1≥0
y≥0
,則y-2x的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標系xOy中,已知四邊形OABC是等腰梯形,A(6,0),C(1,
3
)
,點,M滿足
OM
=
1
2
OA
,點P在線段BC上運動(包括端點),如圖.
(1)求∠OCM的余弦值;
(2)是否存在實數(shù)λ,使(
OA
OP
)⊥
CM
,若存在,求出滿足條件的實數(shù)λ的取值范圍,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x,y∈R,則( 。
A、lg(2x+2y)=lg2x+lg2y
B、lg(2x•2y)=lg2x•lg2y
C、lg(2x+y)=lg2x•lg2y
D、lg(2x+y)=lg2x+lg2y

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對具有線性相關(guān)關(guān)系的變量x,y有一組觀測數(shù)據(jù)(xi,yi)( i=1,2,…,8),其回歸直線方程是
?
y
=
1
3
x+a且x1+x2+…+x8=6,y1+y2+…+y8=3,則實數(shù)a的值是( 。
A、
1
16
B、
1
8
C、
1
4
D、
1
2

查看答案和解析>>

同步練習(xí)冊答案