9.已知命題p:?x1,x2∈R,(f(x1)-f(x2))(x1-x2)≥0,命題q:實數(shù)x,y∈R,若x+y>2,則x>1或y>1;若p∧q為假命題,則( 。
A.函數(shù)f(x)為R上增函數(shù)B.函數(shù)f(x)為R上減函數(shù)
C.函數(shù)f(x)在R上單調(diào)性不確定D.命題q為假命題

分析 根據(jù)復(fù)合命題的真假,判斷出q的真假即可.

解答 解:若p∧q為假命題,則p假或q假,
而命題q:實數(shù)x,y∈R,若x+y>2,則x>1或y>1,
是真命題,
故命題p是假命題,
故:?x1,x2∈R,(f(x1)-f(x2))(x1-x2)<0,
故函數(shù)f(x)為R上減函數(shù),
故選:B.

點評 本題考查了復(fù)合命題的判斷,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.在棱長為1的正方體ABCD-A'B'C'D'中,異面直線A'D與AB'所成角的大小是$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.一個幾何體的三視圖如圖所示,則該幾何體的體積是( 。
A.$\frac{2}{3}$B.$\frac{1}{3}$C.$\frac{4}{3}$D.$\frac{8}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,三棱柱ABC-A1B1C1中,側(cè)面BB1C1C為菱形,AC=AB1
(1)證明:AB⊥B1C;
(2)若∠CAB1=90°,∠CBB1=60°,AB=BC,求二面角A-A1B1-C1的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右焦點為F,短軸長為2$\sqrt{3}$,點P為橢圓C上一點,且點P到點F的最遠(yuǎn)距離是最近距離的3倍.
(I)求橢圓C的方程;
(Ⅱ)設(shè)A為橢圓C的左頂點,過點F的直線l交橢圓C于D、E兩點,直線AD、AE與直線x=4分別交于點M、N,試問:在x軸上是否存在定點Q,使得以MN為直徑的圓過點Q?若存在,求出Q點坐標(biāo);若不存在,KH請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知動點P(x,y)滿足$\sqrt{{x}^{2}+(y+3)^{2}}$+$\sqrt{{x}^{2}+(y-3)^{2}}$=6,則動點P的軌跡是( 。
A.雙曲線B.線段C.拋物線D.橢圓

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.在△ABC中,a,b,c分別為∠A、∠B、∠C、的對邊,若a+c=2b,且$sinB=\frac{4}{5}$,當(dāng)△ABC的面積為$\frac{3}{2}$時,則b=( 。
A.$\frac{{1+\sqrt{3}}}{2}$B.2C.4D.2+$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.用兩種語句寫出求1 2+2 2+…+100 2的值的算法.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.(理)若a=${∫}_{\frac{π}{2}}^{2}$sinxdx,b=∫01cosxdx,則a與b的關(guān)系是(  )
A.a+b=0B.a>bC.a<bD.a=b

查看答案和解析>>

同步練習(xí)冊答案