【題目】對(duì)于函數(shù),設(shè),,若存在,使得,則稱(chēng)互為“零點(diǎn)相鄰函數(shù)”.若函數(shù)互為“零點(diǎn)相鄰函數(shù)”,則實(shí)數(shù)的取值范圍是

A. B. C. D.

【答案】D

【解析】

先得出函數(shù)fx)=ex1+x2的零點(diǎn)為x1.再設(shè)gx)=x2axa+3的零點(diǎn)為β,根據(jù)函數(shù)fx)=ex1+x2gx)=x2axa+3互為“零點(diǎn)關(guān)聯(lián)函數(shù)”,利用新定義的零點(diǎn)關(guān)聯(lián)函數(shù),有|1β|1,從而得出gx)=x2axa+3的零點(diǎn)所在的范圍,最后利用數(shù)形結(jié)合法求解即可.

函數(shù)fx)=ex1+x2的零點(diǎn)為x1

設(shè)gx)=x2axa+3的零點(diǎn)為β,

若函數(shù)fx)=ex1+x2gx)=x2axa+3互為“零點(diǎn)關(guān)聯(lián)函數(shù)”,

根據(jù)零點(diǎn)關(guān)聯(lián)函數(shù),則|1β|1

0β2,如圖

由于gx)=x2axa+3必過(guò)點(diǎn)A(﹣14),

故要使其零點(diǎn)在區(qū)間[0,2]上,則,

解得2a3,

故選:D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C1的方程為,雙曲線(xiàn)C2的左、右焦點(diǎn)分別是C1的左、右頂點(diǎn),而C2的左、右頂點(diǎn)分別是C1的左、右焦點(diǎn),O為坐標(biāo)原點(diǎn).

(1)求雙曲線(xiàn)C2的方程;

(2)若直線(xiàn)lykx與雙曲線(xiàn)C2恒有兩個(gè)不同的交點(diǎn)AB,且,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】不等式組表示的平面區(qū)域?yàn)?/span>D的最大值等于8.

1)求的值;

2)求的取值范圍;

3)若直線(xiàn)過(guò)點(diǎn)P(-3,3),求區(qū)域D在直線(xiàn)上的投影的長(zhǎng)度的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐PABCD中,PA⊥平面ABCD,∠ABC=∠BAD=90°,ADAP=4,ABBC=2,MPC的中點(diǎn)點(diǎn)N在線(xiàn)段AD.

(1)點(diǎn)N為線(xiàn)段AD的中點(diǎn)時(shí),求證:直線(xiàn)PA∥面BMN;

(2)若直線(xiàn)MN與平面PBC所成角的正弦值為,求二面角CBMN所成角θ的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,雙曲線(xiàn)經(jīng)過(guò)點(diǎn),其中一條近線(xiàn)的方程為,橢圓與雙曲線(xiàn)有相同的焦點(diǎn)橢圓的左焦點(diǎn),左頂點(diǎn)和上頂點(diǎn)分別為FA,B,且點(diǎn)F到直線(xiàn)AB的距離為

求雙曲線(xiàn)的方程;

求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,,,,,,點(diǎn)的中點(diǎn)

(1)求證:平面;

(2)若平面 平面,求直線(xiàn)與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某基地蔬菜大棚采用無(wú)土栽培方式種植各類(lèi)蔬菜.根據(jù)過(guò)去50周的資料顯示,該基地周光照量(小時(shí))都在30小時(shí)以上,其中不足50小時(shí)的有5周,不低于50小時(shí)且不超過(guò)70小時(shí)的有35周,超過(guò)70小時(shí)的有10周.根據(jù)統(tǒng)計(jì),該基地的西紅柿增加量(千克)與使用某種液體肥料的質(zhì)量(千克)之間的關(guān)系如圖所示.

(1)依據(jù)上圖,是否可用線(xiàn)性回歸模型擬合的關(guān)系?請(qǐng)計(jì)算相關(guān)系數(shù)并加以說(shuō)明(精確到0.01).(若,則線(xiàn)性相關(guān)程度很高,可用線(xiàn)性回歸模型擬合)

(2)蔬菜大棚對(duì)光照要求較大,某光照控制儀商家為該基地提供了部分光照控制儀,但每周光照控制儀運(yùn)行臺(tái)數(shù)受周光照量限制,并有如下關(guān)系:

周光照量(單位:小時(shí))

光照控制儀運(yùn)行臺(tái)數(shù)

3

2

1

若某臺(tái)光照控制儀運(yùn)行,則該臺(tái)光照控制儀周利潤(rùn)為3000元;若某臺(tái)光照控制儀未運(yùn)行,則該臺(tái)光照控制儀周虧損1000元.以頻率作為概率,商家欲使周總利潤(rùn)的均值達(dá)到最大,應(yīng)安裝光照控制儀多少臺(tái)?

附:相關(guān)系數(shù)公式,

參考數(shù)據(jù):,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知一個(gè)袋子里有形狀一樣僅顏色不同的6個(gè)小球,其中白球2個(gè),黑球4個(gè)現(xiàn)從中隨機(jī)取球,每次只取一球.

若每次取球后都放回袋中,求事件“連續(xù)取球四次,至少取得兩次白球”的概率;

若每次取球后都不放回袋中,且規(guī)定取完所有白球或取球次數(shù)達(dá)到五次就終止游戲,記游戲結(jié)束時(shí)一共取球X次,求隨機(jī)變量X的分布列與期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓過(guò)點(diǎn),且右焦點(diǎn)為

1)求橢圓的方程;

2)過(guò)點(diǎn)的直線(xiàn)與橢圓交于兩點(diǎn),交軸于點(diǎn).若,求證:為定值;

3)在(2)的條件下,若點(diǎn)不在橢圓的內(nèi)部,點(diǎn)是點(diǎn)關(guān)于原點(diǎn)的對(duì)稱(chēng)點(diǎn),試求三角形面積的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案