【題目】已知一個袋子里有形狀一樣僅顏色不同的6個小球,其中白球2個,黑球4現(xiàn)從中隨機取球,每次只取一球.

若每次取球后都放回袋中,求事件“連續(xù)取球四次,至少取得兩次白球”的概率;

若每次取球后都不放回袋中,且規(guī)定取完所有白球或取球次數(shù)達到五次就終止游戲,記游戲結(jié)束時一共取球X次,求隨機變量X的分布列與期望.

【答案】1

2)隨機變量X的分布列為:

X

2

3

4

5

P





隨機變量X的期望為:

【解析】

試題(1)可從正面計算取得兩次、三次、四次白球的概率和,也可以用1減去取得一次、兩次白球的概率,而四次取球中每次是否取得白球相互獨立,只需用組合數(shù)即可得到相應(yīng)概率;(2)注意取出的球不放回,因此最多取5次白球就會被取完,故X2,34,5,分別計算對應(yīng)的概率,寫出分布列,進而可求出期望.

試題解析:(1)記隨機變量ξ表示連續(xù)取球四次,取得白球的次數(shù),則ξB4

Pξ2)=1Pξ0)-Pξ1

1

2)隨機變量X的取值分別為23,45

∴PX2)=

PX3)=

PX4)=

PX5)=

隨機變量X的分布列為

X

2

3

4

5

P





隨機變量X的期望為:EX

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】橢圓上一點關(guān)于原點的對稱點為 為其右焦點,若,設(shè),且,則該橢圓離心率的最大值為(

A. B. C. D. 1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于函數(shù),設(shè),若存在,使得,則稱互為“零點相鄰函數(shù)”.若函數(shù)互為“零點相鄰函數(shù)”,則實數(shù)的取值范圍是

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,他們分別到氣象局與某醫(yī)院抄錄了月份每月號的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下資料:

日期

晝夜溫差

就診人數(shù)(個)

16

該興趣小組確定的研究方案是:先從這六組數(shù)據(jù)中選取組,用剩下的組數(shù)據(jù)求線性回歸方程,再用被選取的組數(shù)據(jù)進行檢驗.

(1)求選取的2組數(shù)據(jù)恰好是相鄰兩個月的概率;

(2)若選取的是月與月的兩組數(shù)據(jù),請根據(jù)月份的數(shù)據(jù),求出 關(guān)于的線性回歸方程;

(3)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過人,則認為得到的線性回歸方程是理想的,試問(2)中所得線性回歸方程是否理想?

參考公式:

img src="http://thumb.zyjl.cn/questionBank/Upload/2018/08/07/18/7f4fe67a/SYS201808071848019525920497_ST/SYS201808071848019525920497_ST.020.png" width="244" height="61" style="-aw-left-pos:0pt; -aw-rel-hpos:column; -aw-rel-vpos:paragraph; -aw-top-pos:0pt; -aw-wrap-type:inline" />,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè),其中a,

的極大值;

設(shè),,若對任意的,恒成立,求a的最大值;

設(shè),若對任意給定的,在區(qū)間上總存在s,,使成立,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司培訓員工某項技能,培訓有如下兩種方式:

方式一:周一到周五每天培訓1小時,周日測試

方式二:周六一天培訓4小時,周日測試

公司有多個班組,每個班組60人,現(xiàn)任選兩組記為甲組、乙組先培訓;甲組選方式一,乙組選方式二,并記錄每周培訓后測試達標的人數(shù)如表:

第一周

第二周

第三周

第四周

甲組

20

25

10

5

乙組

8

16

20

16

用方式一與方式二進行培訓,分別估計員工受訓的平均時間精確到,并據(jù)此判斷哪種培訓方式效率更高?

在甲乙兩組中,從第三周培訓后達標的員工中采用分層抽樣的方法抽取6人,再從這6人中隨機抽取2人,求這2人中至少有1人來自甲組的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)A,B分別為雙曲線 (a>0,b>0)的左、右頂點,雙曲線的實軸長為4,焦點到漸近線的距離為.

(1)求雙曲線的方程;

(2)已知直線yx-2與雙曲線的右支交于M,N兩點,且在雙曲線的右支上存在點D,使,求t的值及點D的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校的1000名高三學生參加四門學科的選拔考試,每門試卷共有10道題,每題10分,規(guī)定:每門錯題成績記為,錯題成績記為,錯題成績記為,錯題成績記為,在錄取時,記為90分,記為80分,記為60分,記為50分.

根據(jù)模擬成績,每一門都有如下統(tǒng)計表:

答錯

題數(shù)

0

1

2

3

4

5

6

7

8

9

10

頻數(shù)

10

90

100

150

150

200

100

100

50

49

1

已知選拔性考試成績與模擬成績基本吻合.

(1)設(shè)為高三學生一門學科的得分,求的分布列和數(shù)學期望;

(2)預(yù)測考生4門總分為320概率.

查看答案和解析>>

同步練習冊答案