精英家教網 > 高中數學 > 題目詳情

【題目】在平面直角坐標系xOy中,雙曲線經過點,其中一條近線的方程為,橢圓與雙曲線有相同的焦點橢圓的左焦點,左頂點和上頂點分別為F,AB,且點F到直線AB的距離為

求雙曲線的方程;

求橢圓的方程.

【答案】(1)(2)

【解析】

由雙曲線經過點,可得m;再由漸近線方程可得m,n的方程,求得n,即可得到所求雙曲線的方程;

由橢圓的a,bc的關系式,求得F,AB的坐標,可得直線AB的方程,由點到直線的距離公式,可得ab的關系式,解方程可得a,b,進而得到所求橢圓方程.

解:雙曲線經過點,

可得,

其中一條近線的方程為,可得,

解得,,

即有雙曲線的方程為;

橢圓與雙曲線有相同的焦點,

可得,

橢圓的左焦點,左頂點和上頂點分別為,,,

由點F到直線AB的距離為,可得

,化為,

解得,

則橢圓的方程為

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,曲線的參數方程為為參數且 )曲線的參數方程為為參數,且),以為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為: ,曲線的極坐標方程為.

(1)求的交點到極點的距離;

(2)設交于點,交于點,當上變化時,求的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知圓和圓.

1)若圓與圓相外切,求的值;

2)若圓軸相切,求圓與圓的公共弦長.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的中心在坐標原點,兩焦點分別為雙曲線的頂點,直線與橢圓交于A,B兩點,且點A的坐標為,點Р是橢圓上異于AB的任意一點,點Q滿足,,且A,B,Q三點不共線.

1)求橢圓的方程;

2)求點Q的軌跡方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數fx)=lnx+﹣1,a∈R.

(1)當a>0時,若函數fx)在區(qū)間[1,3]上的最小值為,求a的值;

(2)討論函數gx)=f′(x)﹣零點的個數.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】對于函數,設,若存在,使得,則稱互為“零點相鄰函數”.若函數互為“零點相鄰函數”,則實數的取值范圍是

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,半徑為2切直線MN于點P,射線PKPN出發(fā)繞點P逆時針方向旋轉到PM,旋轉過程中,PK于點Q,設x,弓形PmQ的面積為,那么的圖象大致是  

A. B.

C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在上海高考改革方案中,要求每位高中生必須在物理、化學、生物、政治、歷史、地理6門學科(3門理科,3門文科)中選擇3門學科參加等級考試,小李同學受理想中的大學專業(yè)所限,決定至少選擇一門理科學科,那么小李同學的選科方案有________種.

查看答案和解析>>

同步練習冊答案