11.若復(fù)數(shù)z=$\frac{1-3i}{1+i}$(i為虛數(shù)單位),則|z+1|=( 。
A.3B.2C.$\sqrt{2}$D.$\sqrt{5}$

分析 利用復(fù)數(shù)的運(yùn)算法則、模的計(jì)算公式即可得出.

解答 解:$z=\frac{1-3i}{1+i}$=$\frac{{({1-3i})({1-i})}}{{({1+i})({1-i})}}=-1-2i$,
所以|z+1|=2,
故選:B.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)的運(yùn)算法則、模的計(jì)算公式,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知數(shù)列{an}滿足a1=$\frac{1}{256},{a_{n+1}}=2\sqrt{a_n}$,若bn=log2an-2,則b1•b2•…•bn的最大值為$\frac{625}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知(5x2-$\frac{1}{x}$)n的二項(xiàng)展開(kāi)式系數(shù)和為1024,則展開(kāi)式中含x項(xiàng)的系數(shù)是( 。
A.-250B.250C.-25D.25

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,第二象限的點(diǎn)P(x0,y0)滿足bx0+ay0=0,若|PF1|:|PF2|:|F1F2|=1:$\sqrt{3}$:2,則雙曲線C的離心率為( 。
A.$\sqrt{5}$B.4C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.復(fù)數(shù)(a-i)(1-i)(a∈R)的實(shí)部與虛部相等,則實(shí)數(shù)a=( 。
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.設(shè)各項(xiàng)均為正數(shù)的等比數(shù)列{an}中,a1a3=64,a2+a4=72,數(shù)列{bn}的前n向和Sn滿足Sn=$\frac{{n}^{2}+n}{2}$
(1)求數(shù)列{an}的通項(xiàng)an及數(shù)列{bn}的通項(xiàng)bn
(2)設(shè)cn=$\frac{1}{_{n}•lo{g}_{2}{a}_{n}}$,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知各項(xiàng)均為正數(shù)的等比數(shù)列{an}的前n項(xiàng)和為Sn,且S3=14,a3=8,則a6=( 。
A.16B.32C.64D.128

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.設(shè)向量$\overrightarrow{a}$=(4,m),$\overrightarrow$=(1,-2),且$\overrightarrow{a}$⊥$\overrightarrow$,則|$\overrightarrow{a}$-2$\overrightarrow$|=2$\sqrt{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知數(shù)列{an}滿足a1=$\frac{1}{2}$,an+1=an2+an(n∈N*),則$\sum_{n=1}^{2018}$$\frac{1}{{a}_{n}+1}$的整數(shù)部分是1.

查看答案和解析>>

同步練習(xí)冊(cè)答案